ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-reorientation in YbFeO_3

79   0   0.0 ( 0 )
 نشر من قبل Yaroslaw Bazaliy
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise measurements of YbFeO_3 magnetization in the spin-reoirentation temperature interval are performed. It is shown that ytterbium orthoferrite is well described by a recently developed modified mean field theory developed for ErFeO_3. This validates the conjecture about the essential influence of the rare earth ions anisotropic paramagnetism on the magnetization behavior in the reorientation regions of all orthoferrites with Gamma{4} -> Gamma{24} -> Gamma{2} phase transitions.

قيم البحث

اقرأ أيضاً

Nd2Fe14B magnetic nanoparticles have been successfully produced using a surfactant-assisted ball milling technique. The nanoparticles with different size about 6, 20 and 300 nm were obtained by a size-selection process. Spin-reorientation transition temperature of the NdFeB nanoparticles was then determined by measuring the temperature dependence of DC and AC magnetic susceptibility. It was found that the spin-reorientation transition temperature (Tsr) of the nanoparticles is strongly size dependent, i.e., Tsr of the 300 nm particles is lower than that of raw materials and a significant decrease was observed in the 20 nm particles.
The structural, phonon, magnetic, dielectric, and magneto dielectric responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This compound showed giant magneto dielectric response (10%-24%) induced by strong spin-lattice coupling a cross its spin reorientation transition (150-250 K). The role of two Debye temperatures pertaining to differently coordinated sites in the dielectric relaxations is established. The positive giant magneto-dielectricity is shown to be a direct consequence of the modulations in the lattice degrees of freedom through applied external field across the spin reorientation transition. Our study illustrates novel control of magneto-dielectricity by tuning the spin reorientation transition in a material that possess strong spin lattice coupling.
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of the applied pressure. At zero applied pressure, the easy axis is along the c-direction or perpendicular to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c-axis to the ab-plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (>100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.
Magnetic structure evolution of multiferroic hexagonal $YMn_{1-x}Fe_{x}O_{3}$ (${x} = 0, 0.05,$ and $0.1$) has been studied by carrying out detailed temperature-dependent neutron diffraction at zero- and 5T-fields. Thermodynamic data confirm antiferr omagnetic ordering at $T_{N}$ in all the compositions. Our sub-$T_{N}$ neutron diffraction results assign the magnetic structure of pure $YMnO_3$ to $Gamma_{1}$ irreducible representation. Over the perturbative-doping range, the magnetic configuration changes via $Gamma_{1}+Gamma_{2}$ for $YMn_{0.95}Fe_{0.05}O_{3}$ on to $Gamma_{2}$ for $YMn_{0.9}Fe_{0.1}O_{3}$, as the maiden compositional analogue of spin-reorientation; its occurrence in temperature-domain already reported for several manganites. Moreover, while the large thermal isostructural changes observed above ${T}_{N}$ are subdued in the ordered state, small alterations by the applied 5T-field are relatively uniform across, confirming strong magneto-elastic nature of the system. Decrease of the ordered magnetic moment ($mu_{ord}$) and planar magnetic frustration noted with Fe-doping is enhanced by the applied field, apparently through canting.
Polarization- and temperature-dependent Raman data along with theoretical simulations are presented for the Kagome ferromagnet Fe_3Sn_2. Eight out of nine expected phonon modes were identified. The experimental energies compare well with those from t he simulations. The analysis of the line widths indicates relatively strong phonon-phonon coupling in the range 0.1 to 1. The temperature-dependent frequencies of three A_{1g} modes show weak anomalies at approximately 100 K. In contrast, the linewidths of all phonon modes follow the conventional exponential broadening up to room temperature except for the softest A_{1g} mode, whose width exhibits a kink close to 100 K and becomes nearly constant for T > 100 K. These features are indicative of a spin reorientation taking place in the temperature range above 100 K which might arise from spin-phonon coupling. The low-energy part of the electronic continuum in E_g symmetry depends strongly on temperature. The possible reasons include particle-hole excitation tracking the resistivity, a spin-dependent gap or spin fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا