ﻻ يوجد ملخص باللغة العربية
In LCLS-II, after acceleration and compression and just before entering the undulator, the beam passes through 2.5 km of 24.5 mm (radius) stainless steel pipe. The bunch that passes through the pipe is extremely short---with an rms of 8 um for the nominal 100 pC case. Thus, even though the pipe has a large aperture, the wake that applies is the {it short-range} resistive wall wakefield. The bunch distribution is approximately uniform, and therefore the wake induced voltage is characterized by a rather linear voltage chirp. It turns out that the wake supplies needed dechirping to the LCLS-II beam before it enters the undulator. In this note we calculate the wake, discuss the confidence in the calculation, and investigate how to improve the induced chirp linearity and/or strength. Finally, we also study the strength and effects of the transverse (dipole) resistive wall wakefield.
The superconducting cavities in the continuous wave (CW) linacs of LCLS-II are designed to operate at 2 K, where cooling costs are very expensive. One source of heat is presented by the higher order mode (HOM) power deposited by the beam. Due to the
This paper describes the concept for the DArk Sector Experiments at LCLS-II (DASEL) facility which provides a near-CW beam of multi-GeV electrons to the SLAC End Station A for experiments in particle physics. The low-current multi-GeV electron beam i
In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These include a prototype built and
Quality factor is a primary cost driver for high energy, continuous wave (CW) SRF linacs like the LCLS-II X-ray free electron laser currently under construction. Taking this into account, several innovations were introduced in the LCLS-II cryomodule
Field emission is one of the factors that can limit the performance of superconducting radio frequency cavities. In order to reduce possible field emission in LCLS-II (Linac Coherent Light Source II), we are developing plasma processing for 1.3 GHz 9