ﻻ يوجد ملخص باللغة العربية
We show that there exist polynomial endomorphisms of C^2, possessing a wandering Fatou component. These mappings are polynomial skew-products, and can be chosen to extend holomorphically of P^2(C). We also find real examples with wandering domains in R^2. The proof is based on parabolic implosion techniques, and is based on an original idea of M. Lyubich.
Let T be a finite subset of the complex unit circle S^1, and define f: S^1 -> S^1 by f(z) = z^d. Let CH(T) denote the convex hull of T. If card(T) = N > 2, then CH(T) defines a polygon with N sides. The N-gon CH(T) is called a emph{wandering N-gon} i
By applying holomorphic motions, we prove that a parabolic germ is quasiconformally rigid, that is, any two topologically conjugate parabolic germs are quasiconformally conjugate and the conjugacy can be chosen to be more and more near conformal as l
We study one-dimensional algebraic families of pairs given by a polynomial with a marked point. We prove an unlikely intersection statement for such pairs thereby exhibiting strong rigidity features for these pairs. We infer from this result the dyna
We continue our investigation of the parameter space of families of polynomial skew products. Assuming that the base polynomial has a Julia set not totally disconnected and is neither a Chebyshev nor a power map, we prove that, near any bifurcation p
For every $minmathbb{N}$, we establish the equidistribution of the sequence of the averaged pull-backs of a Dirac measure at any given value in $mathbb{C}setminus{0}$ under the $m$-th order derivatives of the iterates of a polynomials $fin mathbb{C}[