ترغب بنشر مسار تعليمي؟ اضغط هنا

Holomorphic Motions, Fatou Linearization, and Quasiconformal Rigidity for Parabolic Germs

153   0   0.0 ( 0 )
 نشر من قبل Yunping Jiang
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Yunping Jiang




اسأل ChatGPT حول البحث

By applying holomorphic motions, we prove that a parabolic germ is quasiconformally rigid, that is, any two topologically conjugate parabolic germs are quasiconformally conjugate and the conjugacy can be chosen to be more and more near conformal as long as we consider these germs defined on smaller and smaller neighborhoods. Before proving this theorem, we use the idea of holomorphic motions to give a conceptual proof of the Fatou linearization theorem. As a by-product, we also prove that any finite number of analytic germs at different points in the Riemann sphere can be extended to a quasiconformal homeomorphism which can be more and more near conformal as as long as we consider these germs defined on smaller and smaller neighborhoods of these points.



قيم البحث

اقرأ أيضاً

We prove that a hyperbolic Dulac germ with complex coefficients in its expansion is linearizable on a standard quadratic domain and that the linearizing coordinate is again a complex Dulac germ. The proof uses results about normal forms of hyperbolic transseries from another work of the authors.
83 - Yong Fang 2005
We classify quasiconformal Anosov flows whose strong stable and unstable distributions are at least two dimensional and the sum of these two distributions is smooth. We deduce from this classification result the complete classification of volume-pres erving quasiconformal diffeomorphisms whose stable and unstable distributions are at least two dimensional. Our central idea is to take a good time change so that perodic orbits are equi-distributed with respect to a lebesgue measure.
We consider holomorphic semicocycles on the open unit ball in a Banach space taking values in a Banach algebra. We establish criteria for a semicocycle to be linearizable, that is, cohomologically equivalent to one independent of the spatial variable.
Let $M^n$ be a complete noncompact K$ddot{a}$hler manifold of complex dimension $n$ with nonnegative holomorphic bisectional curvature. Denote by $mathcal{O}$$_d(M^n)$ the space of holomorphic functions of polynomial growth of degree at most $d$ on $ M^n$. In this paper we prove that $$dim_{mathbb{C}}{mathcal{O}}_d(M^n)leq dim_{mathbb{C}}{mathcal{O}}_{[d]}(mathbb{C}^n),$$ for all $d>0$, with equality for some positive integer $d$ if and only if $M^n$ is holomorphically isometric to $mathbb{C}^n$. We also obtain sharp improved dimension estimates when its volume growth is not maximal or its Ricci curvature is positive somewhere.
We show that there exist polynomial endomorphisms of C^2, possessing a wandering Fatou component. These mappings are polynomial skew-products, and can be chosen to extend holomorphically of P^2(C). We also find real examples with wandering domains in R^2. The proof is based on parabolic implosion techniques, and is based on an original idea of M. Lyubich.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا