ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering Words by Projection Entropy

59   0   0.0 ( 0 )
 نشر من قبل Isik Baris Fidaner
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply entropy agglomeration (EA), a recently introduced algorithm, to cluster the words of a literary text. EA is a greedy agglomerative procedure that minimizes projection entropy (PE), a function that can quantify the segmentedness of an element set. To apply it, the text is reduced to a feature allocation, a combinatorial object to represent the word occurences in the texts paragraphs. The experiment results demonstrate that EA, despite its reduction and simplicity, is useful in capturing significant relationships among the words in the text. This procedure was implemented in Python and published as a free software: REBUS.

قيم البحث

اقرأ أيضاً

135 - Sosuke Kobayashi 2018
We propose a novel data augmentation for labeled sentences called contextual augmentation. We assume an invariance that sentences are natural even if the words in the sentences are replaced with other words with paradigmatic relations. We stochastica lly replace words with other words that are predicted by a bi-directional language model at the word positions. Words predicted according to a context are numerous but appropriate for the augmentation of the original words. Furthermore, we retrofit a language model with a label-conditional architecture, which allows the model to augment sentences without breaking the label-compatibility. Through the experiments for six various different text classification tasks, we demonstrate that the proposed method improves classifiers based on the convolutional or recurrent neural networks.
Pretraining deep neural network architectures with a language modeling objective has brought large improvements for many natural language processing tasks. Exemplified by BERT, a recently proposed such architecture, we demonstrate that despite being trained on huge amounts of data, deep language models still struggle to understand rare words. To fix this problem, we adapt Attentive Mimicking, a method that was designed to explicitly learn embeddings for rare words, to deep language models. In order to make this possible, we introduce one-token approximation, a procedure that enables us to use Attentive Mimicking even when the underlying language model uses subword-based tokenization, i.e., it does not assign embeddings to all words. To evaluate our method, we create a novel dataset that tests the ability of language models to capture semantic properties of words without any task-specific fine-tuning. Using this dataset, we show that adding our adapted version of Attentive Mimicking to BERT does indeed substantially improve its understanding of rare words.
Paraphrase generation is a longstanding important problem in natural language processing. In addition, recent progress in deep generative models has shown promising results on discrete latent variables for text generation. Inspired by variational autoencoders with discrete latent structures, in this work, we propose a latent bag of words (BOW) model for paraphrase generation. We ground the semantics of a discrete latent variable by the BOW from the target sentences. We use this latent variable to build a fully differentiable content planning and surface realization model. Specifically, we use source words to predict their neighbors and model the target BOW with a mixture of softmax. We use Gumbel top-k reparameterization to perform differentiable subset sampling from the predicted BOW distribution. We retrieve the sampled word embeddings and use them to augment the decoder and guide its generation search space. Our latent BOW model not only enhances the decoder, but also exhibits clear interpretability. We show the model interpretability with regard to emph{(i)} unsupervised learning of word neighbors emph{(ii)} the step-by-step generation procedure. Extensive experiments demonstrate the transparent and effective generation process of this model.footnote{Our code can be found at url{https://github.com/FranxYao/dgm_latent_bow}}
Despite advances in neural network language model, the representation degeneration problem of embeddings is still challenging. Recent studies have found that the learned output embeddings are degenerated into a narrow-cone distribution which makes th e similarity between each embeddings positive. They analyzed the cause of the degeneration problem has been demonstrated as common to most embeddings. However, we found that the degeneration problem is especially originated from the training of embeddings of rare words. In this study, we analyze the intrinsic mechanism of the degeneration of rare word embeddings with respect of their gradient about the negative log-likelihood loss function. Furthermore, we theoretically and empirically demonstrate that the degeneration of rare word embeddings causes the degeneration of non-rare word embeddings, and that the overall degeneration problem can be alleviated by preventing the degeneration of rare word embeddings. Based on our analyses, we propose a novel method, Adaptive Gradient Partial Scaling(AGPS), to address the degeneration problem. Experimental results demonstrate the effectiveness of the proposed method qualitatively and quantitatively.
We propose a new global entity disambiguation (ED) model based on contextualized embeddings of words and entities. Our model is based on a bidirectional transformer encoder (i.e., BERT) and produces contextualized embeddings for words and entities in the input text. The model is trained using a new masked entity prediction task that aims to train the model by predicting randomly masked entities in entity-annotated texts obtained from Wikipedia. We further extend the model by solving ED as a sequential decision task to capture global contextual information. We evaluate our model using six standard ED datasets and achieve new state-of-the-art results on all but one dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا