ترغب بنشر مسار تعليمي؟ اضغط هنا

Rare Words: A Major Problem for Contextualized Embeddings And How to Fix it by Attentive Mimicking

67   0   0.0 ( 0 )
 نشر من قبل Timo Schick
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pretraining deep neural network architectures with a language modeling objective has brought large improvements for many natural language processing tasks. Exemplified by BERT, a recently proposed such architecture, we demonstrate that despite being trained on huge amounts of data, deep language models still struggle to understand rare words. To fix this problem, we adapt Attentive Mimicking, a method that was designed to explicitly learn embeddings for rare words, to deep language models. In order to make this possible, we introduce one-token approximation, a procedure that enables us to use Attentive Mimicking even when the underlying language model uses subword-based tokenization, i.e., it does not assign embeddings to all words. To evaluate our method, we create a novel dataset that tests the ability of language models to capture semantic properties of words without any task-specific fine-tuning. Using this dataset, we show that adding our adapted version of Attentive Mimicking to BERT does indeed substantially improve its understanding of rare words.

قيم البحث

اقرأ أيضاً

Learning high-quality embeddings for rare words is a hard problem because of sparse context information. Mimicking (Pinter et al., 2017) has been proposed as a solution: given embeddings learned by a standard algorithm, a model is first trained to re produce embeddings of frequent words from their surface form and then used to compute embeddings for rare words. In this paper, we introduce attentive mimicking: the mimicking model is given access not only to a words surface form, but also to all available contexts and learns to attend to the most informative and reliable contexts for computing an embedding. In an evaluation on four tasks, we show that attentive mimicking outperforms previous work for both rare and medium-frequency words. Thus, compared to previous work, attentive mimicking improves embeddings for a much larger part of the vocabulary, including the medium-frequency range.
We propose a new global entity disambiguation (ED) model based on contextualized embeddings of words and entities. Our model is based on a bidirectional transformer encoder (i.e., BERT) and produces contextualized embeddings for words and entities in the input text. The model is trained using a new masked entity prediction task that aims to train the model by predicting randomly masked entities in entity-annotated texts obtained from Wikipedia. We further extend the model by solving ED as a sequential decision task to capture global contextual information. We evaluate our model using six standard ED datasets and achieve new state-of-the-art results on all but one dataset.
Active learning is a powerful tool when labelling data is expensive, but it introduces a bias because the training data no longer follows the population distribution. We formalize this bias and investigate the situations in which it can be harmful an d sometimes even helpful. We further introduce novel corrective weights to remove bias when doing so is beneficial. Through this, our work not only provides a useful mechanism that can improve the active learning approach, but also an explanation of the empirical successes of various existing approaches which ignore this bias. In particular, we show that this bias can be actively helpful when training overparameterized models -- like neural networks -- with relatively little data.
Previous literature offers limited clues on how to learn a periodic function using modern neural networks. We start with a study of the extrapolation properties of neural networks; we prove and demonstrate experimentally that the standard activations functions, such as ReLU, tanh, sigmoid, along with their variants, all fail to learn to extrapolate simple periodic functions. We hypothesize that this is due to their lack of a periodic inductive bias. As a fix of this problem, we propose a new activation, namely, $x + sin^2(x)$, which achieves the desired periodic inductive bias to learn a periodic function while maintaining a favorable optimization property of the ReLU-based activations. Experimentally, we apply the proposed method to temperature and financial data prediction.
We use the multilingual OSCAR corpus, extracted from Common Crawl via language classification, filtering and cleaning, to train monolingual contextualized word embeddings (ELMo) for five mid-resource languages. We then compare the performance of OSCA R-based and Wikipedia-based ELMo embeddings for these languages on the part-of-speech tagging and parsing tasks. We show that, despite the noise in the Common-Crawl-based OSCAR data, embeddings trained on OSCAR perform much better than monolingual embeddings trained on Wikipedia. They actually equal or improve the current state of the art in tagging and parsing for all five languages. In particular, they also improve over multilingual Wikipedia-based contextual embeddings (multilingual BERT), which almost always constitutes the previous state of the art, thereby showing that the benefit of a larger, more diverse corpus surpasses the cross-lingual benefit of multilingual embedding architectures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا