ﻻ يوجد ملخص باللغة العربية
In the probe limit, we numerically construct a holographic p-wave superfluid model in the 4D and 5D AdS black holes coupled to a Maxwell-complex vector field. We find that, for the condensate with the fixed superfluid velocity, the results are similar to the s-wave cases in both 4D and 5D spacetimes. In particular, The Cave of Winds and the phase transition always being the second order take place in the 5D case. Moreover, we find the second-first order translating point $frac{S_y}{mu}$ increases with the mass squared. Furthermore, for the supercurrent with the fixed temperature, the results agree with the GL prediction near the critical temperature. In addition, this complex vector superfluid model is still a generalization of the SU(2) superfluid model, and also provides a holographic realization of the $He_3$ superfluid system.
In the probe limit, we numerically build a holographic $p$-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent
We construct the holographic p-wave superfluid in Gauss-Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase str
We investigate the holographic p-wave superfluid in the background metric of the AdS soliton with $RF^{2}$ corrections. Two models, namely, the Maxwell complex vector field model and Yang-Mills theory, are studied in the above context by employing th
We study the hydrodynamic excitations of backreacted holographic superfluids by computing the full set of quasinormal modes (QNMs) at finite momentum and matching them to the existing hydrodynamic theory of superfluids. Additionally, we analyze the b
We study the Kibble-Zurek mechanism in a 2d holographic p-wave superconductor model with a homogeneous source quench on the critical point. We derive, on general grounds, the scaling of the Kibble-Zurek time, which marks breaking-down of adiabaticity