ﻻ يوجد ملخص باللغة العربية
We construct the holographic p-wave superfluid in Gauss-Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss-Bonnet parameter and agree well with the Ginzburg-Landau prediction.
We investigate the neutral AdS black-hole solution in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity proposed in [K. Aoki, M.A. Gorji, and S. Mukohyama, Phys. Lett. B {bf 810}, 135843 (2020)] and construct the gravity duals of ($2+1$)-di
We introduce higher-derivative Gauss-Bonnet correction terms in the gravity sector and we relate the modified gravity theory in the bulk to the strongly coupled quantum field theory on a de Sitter boundary. We study the process of holographic thermal
We construct the holographic superconductors away from the probe limit in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity. We observe that, both for the ground state and excited states, the critical temperature first decreases then increa
Recently it has been argued that in Einstein gravity Anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dime
In this work we show that Einstein gravity in four dimensions can be consistently obtained from the compactification of a generic higher curvature Lovelock theory in dimension $D=4+p$, being $pgeq1$. The compactification is performed on a direct prod