ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced performance of joint cooling and energy production

99   0   0.0 ( 0 )
 نشر من قبل Ora Entin-Wohlman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficiencies/coefficients of performance of three-terminal devices, comprising two electronic terminals and a thermal one (e.g., a boson bath) are discussed. In particular, two procedures are analyzed. (a) One of the electronic terminals is cooled by investing thermal power (from the thermal bath) and electric power (from voltage applied across the electronic junction); (b) The invested thermal power from the boson bath is exploited to cool one electronic terminal and to produce electric power. Rather surprisingly, the coefficient of performance of (b) can be enhanced as compared to that of (a).

قيم البحث

اقرأ أيضاً

When biased at a voltage just below a superconductors energy gap, a tunnel junction between this superconductor and a normal metal cools the latter. While the study of such devices has long been focussed to structures of submicron size and consequent ly cooling power in the picoWatt range, we have led a thorough study of devices with a large cooling power up to the nanoWatt range. Here we describe how their performance can be optimized by using a quasi-particle drain and tuning the cooling junctions tunnel barrier.
Enhanced electron cooling is demonstrated in a strained-silicon/superconductor tunnel junction refrigerator of volume 40 um^3. The electron temperature is reduced from 300 mK to 174 mK, with the enhancement over an unstrained silicon control (300 mK to 258 mK) being attributed to the smaller electron-phonon coupling in the strained case. Modeling and the resulting predictions of silicon-based cooler performance are presented. Further reductions in the minimum temperature are expected if the junction sub-gap leakage and tunnel resistance can be reduced. However, if only tunnel resistance is reduced, Joule heating is predicted to dominate.
A quantum dot driven by two ac gate potentials oscillating with a phase lag may be regarded as a quantum engine, where energy is transported and dissipated in the form of heat. In this chapter we introduce a microscopic model for a quantum pump and a nalyze the fundamental principle for the conservation of the charge and energy in this device. We also present the basics of two well established many-body techniques to treat quantum transport in harmonically time-dependent systems. We discuss the different operating modes of this quantum engine, including the mechanism of heat generation. Finally, we establish the principles of quantum refrigeration within the weak driving regime. We also show that it is possible to achieve a regime where part of the work done by some of the ac fields can be coherently transported and can be used by the other driving voltages.
This letter reports the impact of surface morphology on the carrier transport and RF performance of graphene FETs formed on epitaxial graphene films synthesized on SiC substrates. Such graphene exhibits long terrace structures with widths between 3-5 {mu}m and steps of 10pm2 nm in height. While a carrier mobility above 3000 cm2/Vs at a carrier density of 1e12 cm-2 is obtained in a single graphene terrace domain at room temperature, the step edges can result in a vicinal step resistance of ~21 k{Omega}.{mu}m. By orienting the transistor layout so that the entire channel lies within a single graphene terrace, and reducing the access resistance associated with the ungated part of the channel, a cut-off frequency above 200 GHz is achieved for graphene FETs with channel lengths of 210 nm, which is the highest value reported on epitaxial graphene thus far.
Several small-bandgap semiconductors are now known to have protected metallic surface states as a consequence of the topology of the bulk electron wavefunctions. The known topological insulators with this behavior include the important thermoelectric materials Bi_2Te_3 and Bi_2Se_3, whose surfaces are observed in photoemission experiments to have an unusual electronic structure with a single Dirac cone. We study in-plane (i.e., horizontal) transport in thin films made of these materials. The surface states from top and bottom surfaces hybridize, and conventional diffusive transport predicts that the tunable hybridization-induced band gap leads to increased thermoelectric performance at low temperatures. Beyond simple diffusive transport, the conductivity shows a crossover from the spin-orbit induced anti-localization at a single surface to ordinary localization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا