ﻻ يوجد ملخص باللغة العربية
When biased at a voltage just below a superconductors energy gap, a tunnel junction between this superconductor and a normal metal cools the latter. While the study of such devices has long been focussed to structures of submicron size and consequently cooling power in the picoWatt range, we have led a thorough study of devices with a large cooling power up to the nanoWatt range. Here we describe how their performance can be optimized by using a quasi-particle drain and tuning the cooling junctions tunnel barrier.
In electronic cooling with superconducting tunnel junctions, the cooling power is counterbalanced by the interaction with phonons and by the heat flow from the overheated leads. We study aluminium-based coolers that are equipped with a suspended norm
Heat management and refrigeration are key concepts for nanoscale devices operating at cryogenic temperatures. The design of an on-chip mesoscopic refrigerator that works thanks to the input heat is presented, thus realizing a solid state implementati
We demonstrate an original method -- based on controlled oxidation -- to create high-quality tunnel junctions between superconducting Al reservoirs and InAs semiconductor nanowires. We show clean tunnel characteristics with a current suppression by o
We discuss the charge and the spin tunneling currents between two Bardeen-Cooper-Schrieffer (BCS) superconductors, where one density of states is spin-split. In the presence of a large temperature bias across the junction, we predict the generation o
We investigate electronic thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions. Ferromagnetic insulators coupled to superconductors are known to induce sizable spin splitting in the superconducting density of states