ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Performance in Epitaxial Graphene FETs with Optimized Channel Morphology

144   0   0.0 ( 0 )
 نشر من قبل Yu-Ming Lin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter reports the impact of surface morphology on the carrier transport and RF performance of graphene FETs formed on epitaxial graphene films synthesized on SiC substrates. Such graphene exhibits long terrace structures with widths between 3-5 {mu}m and steps of 10pm2 nm in height. While a carrier mobility above 3000 cm2/Vs at a carrier density of 1e12 cm-2 is obtained in a single graphene terrace domain at room temperature, the step edges can result in a vicinal step resistance of ~21 k{Omega}.{mu}m. By orienting the transistor layout so that the entire channel lies within a single graphene terrace, and reducing the access resistance associated with the ungated part of the channel, a cut-off frequency above 200 GHz is achieved for graphene FETs with channel lengths of 210 nm, which is the highest value reported on epitaxial graphene thus far.



قيم البحث

اقرأ أيضاً

A dual-gate graphene field-effect transistors is presented, which shows improved RF performance by reducing the access resistance using electrostatic doping. With a carrier mobility of 2700 cm2/Vs, a cutoff frequency of 50 GHz is demonstrated in a 35 0-nm gate length device. This fT value is the highest frequency reported to date for any graphene transistor, and it also exceeds that of Si MOSFETs at the same gate length, illustrating the potential of graphene for RF applications.
We report high performance p-type field-effect transistors based on single layered (thickness, ~0.7 nm) WSe2 as the active channel with chemically doped source/drain contacts and high-{kappa} gate dielectrics. The top-gated monolayer transistors exhi bit a high effective hole mobility of ~250 cm2/Vs, perfect subthreshold swing of ~60 mV/dec, and ION/IOFF of >10^6 at room temperature. Special attention is given to lowering the contact resistance for hole injection by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned NO2 chemisorption on WSe2. The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics.
Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undope d. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berrys phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties which may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material.Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nanoelectronics.
Van der Waals heterostrucutures allow for novel devices such as two-dimensional-to-two-dimensional tunnel devices, exemplified by interlayer tunnel FETs. These devices employ channel/tunnel-barrier/channel geometries. However, during layer-by-layer e xfoliation of these multi-layer materials, rotational misalignment is the norm and may substantially affect device characteristics. In this work, by using density functional theory methods, we consider a reduction in tunneling due to weakened coupling across the rotationally misaligned interface between the channel layers and the tunnel barrier. As a prototypical system, we simulate the effects of rotational misalignment of the tunnel barrier layer between aligned channel layers in a graphene/hBN/graphene system. We find that rotational misalignment between the channel layers and the tunnel barrier in this van der Waals heterostructure can significantly reduce coupling between the channels by reducing, specifically, coupling across the interface between the channels and the tunnel barrier. This weakened coupling in graphene/hBN/graphene with hBN misalignment may be relevant to all such van der Waals heterostructures.
We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA cleaning step to improve the surface quality. In contrast to conventional fabric ation routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FET devices display nearly zero Dirac voltage, and the contact resistance between the graphene and metal contacts is on the order of 910 +- 340 Ohm-micrometer. This approach enables formation of conducting graphene channel lengths up to one millimeter. The resist-free transfer process provides a clean graphene surface that is promising for use in high sensitivity graphene FET biosensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا