ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene on metallic surfaces: problems and perspectives

454   0   0.0 ( 0 )
 نشر من قبل Yu. S. Dedkov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present manuscript summarizes the modern view on the problem of the graphene-metal interaction. Presently, the close-packed surfaces of d metals are used as templates for the preparation of highly-ordered graphene layers. Different classifications can be introduced for these systems: graphene on lattice-matched and graphene on lattice-mismatched surfaces where the interaction with the metallic substrate can be either strong or weak. Here these classifications, with the focus on the specific features in the electronic structure in all cases, are considered on the basis of large amounts of experimental and theoretical data, summarized and discussed. The perspectives of the graphene-metal interface in fundamental and applied physics and chemistry are pointed out.



قيم البحث

اقرأ أيضاً

121 - P. Lazic , Z. Crljen 2014
We showed how a structural modification of graphene, which gives a carbon allotrope graphyne, can induce an energy gap at the K point of the Brillouin zone. Upon adsorption on metallic surfaces, the same mechanism is responsible for the further modif ication of the energy gap which occurs via the charge transfer mechanism. We performed the calculation based on the density functional theory with the novel non-local vdW-DF correlation of the adsorption of graphyne on Cu(111), Ni(111) and Co(0001) surfaces and showed the dependence of the gap change on the charge transfer in the system. The binding of graphyne appears to be stronger than of graphene on the same surfaces.
Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally d emonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with textit{in-situ} electron diffraction and photoemission, plus textit{ex-situ} atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides a powerful route towards tuning the growth and properties of epitaxial films and membranes on 2D materials.
We propose the design of low strained and energetically favourable mono and bilayer graphene overlayer on anatase TiO$_2$ (001) surface and examined the electronic structure of the interface with the aid of first principle calculations. In the absenc e of hybridization between surface TiO$_2$ and graphene states, dipolar fluctuations govern the minor charge transfer across the interface. As a result, both the substrate and the overlayer retain their pristine electronic structure. The interface with the monolayer graphene retains its gapless linear band dispersion irrespective of the induced epitaxial strain. The potential gradient opens up a few meV bandgap in the case of Bernal stacking and strengthens the interpenetration of the Dirac cones in the case of hexagonal stacking of the bilayer graphene. The difference between the macroscopic average potential of the TiO$_2$ and graphene layer(s) in the heterostructure lies in the range 3 to 3.13 eV, which is very close to the TiO$_2$ bandgap ($sim$ 3.2 eV). Therefore, the proposed heterostructure will exhibit enhanced photo-induced charge transfer and the graphene component will serve as a visible light sensitizer.
Chiral graphene nanoribbons are extremely interesting structures due to their low bandgaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces and assess the effect of charge transfer on their properties.
We have theoretically investigated the electronic properties of neutral and $n$-doped dangling bond (DB) quasi-one-dimensional structures (lines) in the Si(001):H and Ge(001):H substrates with the aim of identifying atomic-scale interconnects exhibit ing metallic conduction for use in on-surface circuitry. Whether neutral or doped, DB lines are prone to suffer geometrical distortions or have magnetic ground-states that render them semiconducting. However, from our study we have identified one exception -- a dimer row fully stripped of hydrogen passivation. Such a DB-dimer line shows an electronic band structure which is remarkably insensitive to the doping level and, thus, it is possible to manipulate the position of the Fermi level, moving it away from the gap. Transport calculations demonstrate that the metallic conduction in the DB-dimer line can survive thermally induced disorder, but is more sensitive to imperfect patterning. In conclusion, the DB-dimer line shows remarkable stability to doping and could serve as a one-dimensional metallic conductor on $n$-doped samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا