ﻻ يوجد ملخص باللغة العربية
Constraining CP-violating interactions in effective field theory (EFT) of dimension six faces two challenges. Firstly, degeneracies in the multi-dimensional space of Wilson coefficients have to be lifted. Secondly, quadratic contributions of CP-odd dimension six operators are difficult to disentangle from squared contributions of CP-even dimension six operators and from linear contributions of dimension eight operators. Both of these problems are present when new sources of CP-violation are present in the interactions between the Higgs boson and heavy strongly-interacting fermions. We show that degeneracies in the Wilson coefficients can be removed by combining measurements of Higgs-plus-two-jet production via gluon fusion with measurements of top-pair associated Higgs production. In addition, we demonstrate that the sensitivity of the analysis can be improved by exploiting the top-quark threshold in the gluon fusion process. Finally, we substantiate a perturbative argument about the validity of EFT by comparing the quadratic and linear contributions from CP-odd dimension six operators and use this to show explicitly that high statistics measurements at future colliders enable the extraction of perturbatively robust constraints on the associated Wilson coefficients.
We discuss the prospects - within several models - for the observation of CP-violation (CPV) in top decays and production. The outlook looks best for t -> bW at the LHC (MSSM CPV), t -> b tau u_tau at TeV3, LHC and NLC (H^+ CPV), p p-bar -> t b-bar
The violation of CP symmetry is one of Sakharovs conditions for the matter-antimatter asymmetry of the Universe. Currently known sources of CP violation in the quark and neutrino sectors are insufficient to account for this. Is CP also violated in th
CP-violation in the Higgs sector remains a possible source of the baryon asymmetry of the universe. Recent differential measurements of signed angular distributions in Higgs boson production provide a general experimental probe of the CP structure of
The Higgs boson discovered at the LHC opened a new chapter for particle physics. Its properties need to be studied in detail to distinguish a purely standard model (SM) Higgs boson from one of many scalars in an enlarged Higgs sector. The CMS collabo
In this paper, we study the CP violating processes in a general two-Higgs-doublet model (2HDM) with tree-level flavor changing neutral currents. In this model, sizable Yukawa couplings involving top and charm quarks are still allowed by the collider