ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospect for UV observations from the Moon

143   0   0.0 ( 0 )
 نشر من قبل Margarita Safonova Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Space astronomy in the last 40 years has largely been done from spacecraft in low Earth orbit (LEO) for which the technology is proven and delivery mechanisms are readily available. However, new opportunities are arising with the surge in commercial aerospace missions. We describe here one such possibility: deploying a small instrument on the Moon. This can be accomplished by flying onboard the Indian entry to the Google Lunar X PRIZE competition, Team Indus mission, which is expected to deliver a nearly 30 kgs of payloads to the Moon, with a rover as its primary payload. We propose to mount a wide-field far-UV (130--180 nm) imaging telescope as a payload on the Team Indus lander. Our baseline operation is a fixed zenith pointing but with the option of a mechanism to allow observations of different attitudes. Pointing towards intermediate ecliptic latitude (50 deg or above) ensures that the Sun is at least 40 deg off the line of sight at all times. In this position, the telescope can cover higher galactic latitudes as well as parts of Galactic plane. The scientific objectives of such a prospective are delineated and discussed.

قيم البحث

اقرأ أيضاً

The Lunar Ultraviolet Cosmic Imager (LUCI) is a near-ultraviolet (NUV) telescope with all-spherical mirrors, designed and built to fly as a scientific payload on a lunar mission with Team Indus - the original Indian entry to the Google Lunar X-Prize. Observations from the Moon provide a unique opportunity of a stable platform with an unobstructed view of the space at all wavelengths due to the absence of atmosphere and ionosphere. LUCI is an 80 mm aperture telescope, with a field of view of 27.6x 20.4 and a spatial resolution of 5, will scan the sky in the NUV (200-320 nm) domain to look for transient sources. We describe here the assembly, alignment, and calibration of the complete instrument. LUCI is now in storage in a class 1000 clean room and will be delivered to our flight partner in readiness for flight.
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACT) that observe Very High Energy (VHE) gamma ray sources. The PMTs in their cameras are designed to operate under moonlight, but they are limited to Moon phases below 93% (300 Moon hours per year), as they can get damaged if the amount of light they receive is too high. As a result, they cannot be used in the three to five nights around full Moon. We have selected commercial inexpensive UV-pass filters rejecting light above a wavelength of 420 nm, where the moonlight intensity is stronger. We mounted them on light-weight frames that can be easily installed on the telescope cameras. Test observations have been performed during the last nine months, from which a moonlight transmission of about 20% and a Cherenkov light transmission of about 45% are estimated. This allows the observation of sources down to an angular distance of 5 degrees to the Moon during Full Moon: essentially in the whole sky and all possible moonlight conditions. Therefore, the duty cycle of MAGIC can be extended by about 30%, including nights when VHE observations with IACTs are currently not feasible. Here we evaluate the preliminary performance, in terms of sensitivity and energy threshold, of the MAGIC telescopes equipped with the UV-pass filters under different moonlight intensities, as inferred from Crab Nebula observations and Monte Carlo simulations.
A new era of exploration of the low radio frequency Universe from the Moon will soon be underway with landed payload missions facilitated by NASAs Commercial Lunar Payload Services (CLPS) program. CLPS landers are scheduled to deliver two radio scien ce experiments, ROLSES to the nearside and LuSEE to the farside, beginning in 2021. These instruments would be pathfinders for a 10-km diameter interferometric array, FARSIDE, composed of 128 pairs of dipole antennas proposed to be delivered to the lunar surface later in the decade. ROLSES and LuSEE, operating at frequencies from 100 kHz to a few tens of MHz, will investigate the plasma environment above the lunar surface and measure the fidelity of radio spectra on the surface. Both use electrically-short, spiral-tube deployable antennas and radio spectrometers based upon previous flight models. ROLSES will measure the photoelectron sheath density to better understand the charging of the lunar surface via photoionization and impacts from the solar wind, charged dust, and current anthropogenic radio frequency interference. LuSEE will measure the local magnetic field and exo-ionospheric density, interplanetary radio bursts, Jovian and terrestrial natural radio emission, and the galactic synchrotron spectrum. FARSIDE, and its precursor risk-reduction six antenna-node array PRIME, would be the first radio interferometers on the Moon. FARSIDE would break new ground by imaging radio emission from Coronal Mass Ejections (CME) beyond 2 solar radii, monitor auroral radiation from the B-fields of Uranus and Neptune (not observed since Voyager), and detect radio emission from stellar CMEs and the magnetic fields of nearby potentially habitable exoplanets.
Ultra-high-energy neutrinos and cosmic rays produce short radio flashes through the Askaryan effect when they impact on the Moon. Earthbound radio telescopes can search the Lunar surface for these signals. A new generation of low- frequency, digital radio arrays, spearheaded by LOFAR, will allow for searches with unprecedented sensitivity. In the first stage of the NuMoon project, low-frequency observations were carried out with the Westerbork Synthesis Radio Telescope, leading to the most stringent limit on the cosmic neutrino flux above 10$^{23}$ eV. With LOFAR we will be able to reach a sensitivity of over an order of magnitude better and to decrease the threshold energy.
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above $10^{22}$ eV are predicted i n certain Grand-Unifying-Theories (GUTs) and e.g. models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earths moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا