ﻻ يوجد ملخص باللغة العربية
Ultra-high-energy neutrinos and cosmic rays produce short radio flashes through the Askaryan effect when they impact on the Moon. Earthbound radio telescopes can search the Lunar surface for these signals. A new generation of low- frequency, digital radio arrays, spearheaded by LOFAR, will allow for searches with unprecedented sensitivity. In the first stage of the NuMoon project, low-frequency observations were carried out with the Westerbork Synthesis Radio Telescope, leading to the most stringent limit on the cosmic neutrino flux above 10$^{23}$ eV. With LOFAR we will be able to reach a sensitivity of over an order of magnitude better and to decrease the threshold energy.
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. A significant increase in the number of detected UHECR is expected to be achiev
The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first $sim 2,mathrm{years}$ of observing, 4
Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which start
We report on the results of a search for radio transients between 115 and 190,MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 minutes and several months. A total of 151 images were obtained, giving a
An antenna array devoted to the autonomous radio-detection of high energy cosmic rays is being deployed on the site of the 21 cm array radio telescope in XinJiang, China. Thanks in particular to the very good electromagnetic environment of this remot