ﻻ يوجد ملخص باللغة العربية
We study the effects of strong electron-electron interactions on the surface of cubic topological Kondo insulators (such as samarium hexaboride, SmB$_6$). Cubic topological Kondo insulators generally support three copies of massless Dirac nodes on the surface, but only two of them are energetically degenerate and exhibit an energy offset relative to the third one. With a tunable chemical potential, when the surface states host electron and hole pockets of comparable size, strong interactions may drive this system into rotational symmetry breaking nematic and translational symmetric breaking excitonic spin- or charge-density-wave phases, depending on the relative chirality of the Dirac cones. Taking a realistic surface band structure into account we analyze the associated Ginzburg-Landau theory and compute the mean field phase diagram for interacting surface states. Beyond mean field theory, this system can be described by a two-component isotropic Ashkin-Teller model at finite temperature, and we outline the phase diagram of this model. Our theory provides a possible explanation of recent measurements which detect a two-fold symmetric magnetoresistance and an upturn in surface resistivity with tunable gate voltage in SmB$_6$. Our discussion can also be germane to other cubic topological insulators, such as ytterbium hexaboride (YbB$_6$), plutonium hexaboride (PuB$_6$).
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini
A fascinating type of symmetry-protected topological states of matter are topological Kondo insulators, where insulating behavior arises from Kondo screening of localized moments via conduction electrons, and non-trivial topology emerges from the str
We investigate interaction effects in three dimensional weak topological insulators (TI) with an even number of Dirac cones on the surface. We find that the surface states can be gapped by a surface charge density wave (CDW) order without breaking th
The edge states of a two-dimensional quantum spin Hall (QSH) insulator form a one-dimensional helical metal which is responsible for the transport property of the QSH insulator. Conceptually, such a one-dimensional helical metal can be attached to an
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tun