ﻻ يوجد ملخص باللغة العربية
We investigate interaction effects in three dimensional weak topological insulators (TI) with an even number of Dirac cones on the surface. We find that the surface states can be gapped by a surface charge density wave (CDW) order without breaking the time-reversal symmetry. In this sense, time reversal symmetry alone can not robustly protect the weak TI state in the presence of interactions. If the translational symmetry is additionally imposed in the bulk, a topologically non-trivial weak TI state can be obtained with helical edge states on the CDW domain walls. In other words, a CDW domain wall on the surface is topologically equivalent to the edge of a two-dimensional quantum spin Hall insulator. Therefore, the surface state of a weak topological insulator with translation symmetry breaking on the surface has a half quantum spin Hall effect, in the same way that the surface state of a strong topological insulator with time-reversal symmetry breaking on the surface has a half quantum Hall effect. The on-site and nearest neighbor interactions are investigated in the mean field level and the phase diagram for the surface states of weak topological insulators is obtained.
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tun
We study the influence of step defect on surface states in three-dimensional topological insulators subject to a perpendicular magnetic field. By calculating the energy spectrum of the surface states, we find that Landau levels (LLs) can form on flat
We propose a surface-edge state theory for half quantized Hall conductance of surface states in topological insulators. The gap opening of a single Dirac cone for the surface states in a weak magnetic field is demonstrated. We find a new surface stat
An intriguing observation on the quantum anomalous Hall effect (QAHE) in magnetic topological insulators (MTIs) is the dissipative edge states, where quantized Hall resistance is accompanied by nonzero longitudinal resistance. We numerically investig
We study the quantum Hall effect of Dirac fermions on the surface of a Wilson-Dirac type topological insulator thin film in the strong topological insulating phase. Although a magnetic field breaks time reversal symmetry of the bulk, the surface stat