ﻻ يوجد ملخص باللغة العربية
The vector channel spectral function at zero spatial momentum is calculated at next-to-leading order in thermal QCD for any quark mass. It corresponds to the imaginary part of the massive quark contribution to the photon polarization tensor. The spectrum shows a well defined transport peak in contrast to both the heavy quark limit studied previously, where the low frequency domain is exponentially suppressed at this order and the naive massless case where it vanishes at leading order and diverges at next-to-leading order. From our general expressions, the massless limit can be taken and we show that no divergences occur if done carefully. Finally, we compare the massless limit to results from lattice simulations.
We compute the imaginary part of the heavy quark contribution to the photon polarization tensor, i.e. the quarkonium spectral function in the vector channel, at next-to-leading order in thermal QCD. Matching our result, which is valid sufficiently fa
We present the first calculation of the next-to-next-to-leading order threshold soft function for top quark pair production at hadron colliders, with full velocity dependence of the massive top quarks. Our results are fully analytic, and can be entir
We present the first calculation at next-to-leading order (NLO) in $alpha_s$ of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of $z$, namely the fragmentation function for a gluon into a spin-singlet S-
Motivated by applications in thermal QCD and cosmology, we elaborate on a general method for computing next-to-leading order spectral functions for composite operators at vanishing spatial momentum, accounting for real, virtual as well as thermal cor
We derive a full formula for the energy level of a heavy quarkonium state identified by the quantum numbers $n$, $ell$, $s$ and $j$, up to ${cal O}(alpha_s^5 m)$ and ${cal O}(alpha_s^5 m log alpha_s)$ in perturbative QCD. The QCD Bethe logarithm is g