ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Formula for Heavy Quarkonium Energy Levels at Next-to-next-to-next-to-leading Order

199   0   0.0 ( 0 )
 نشر من قبل Yukinari Sumino
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a full formula for the energy level of a heavy quarkonium state identified by the quantum numbers $n$, $ell$, $s$ and $j$, up to ${cal O}(alpha_s^5 m)$ and ${cal O}(alpha_s^5 m log alpha_s)$ in perturbative QCD. The QCD Bethe logarithm is given in a one-parameter integral form. The rest of the formula is given as a combination of rational numbers, transcendental numbers ($pi$, $zeta(3)$, $zeta(5)$) and finite sums (besides the 3-loop constant $bar{a}_3$ of the static potential whose full analytic form is still unknown). A derivation of the formula is given.



قيم البحث

اقرأ أيضاً

We develop further an approach to computing energy-energy correlations (EEC) directly from finite correlation functions. In this way, one completely avoids infrared divergences. In maximally supersymmetric Yang-Mills theory ($mathcal{N}=4$ sYM), we d erive a new, extremely simple formula relating the EEC to a triple discontinuity of a four-point correlation function. We use this formula to compute the EEC in $mathcal{N}=4$ sYM at next-to-next-to-leading order in perturbation theory. Our result is given by a two-fold integral representation that is straightforwardly evaluated numerically. We find that some of the integration kernels are equivalent to those appearing in sunrise Feynman integrals, which evaluate to elliptic functions. Finally, we use the new formula to provide the expansion of the EEC in the back-to-back and collinear limits.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
We present the first calculation at next-to-leading order (NLO) in $alpha_s$ of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of $z$, namely the fragmentation function for a gluon into a spin-singlet S- wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in $4-2epsilon$ dimensions. We also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details neces sary to perform the QCD scale evolution and cross section calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
We report a calculation of the perturbative matching coefficients for the transverse-momentum-dependent parton distribution functions for quark at the next-to-next-to-next-to-leading order in QCD, which involves calculation of non-standard Feynman in tegrals with rapidity divergence. We introduce a set of generalized Integration-By-Parts equations, which allows an algorithmic evaluation of such integrals using the machinery of modern Feynman integral calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا