ﻻ يوجد ملخص باللغة العربية
We present the first calculation at next-to-leading order (NLO) in $alpha_s$ of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of $z$, namely the fragmentation function for a gluon into a spin-singlet S-wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in $4-2epsilon$ dimensions. We also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.
The short-distance coefficients for the color-octet 3S1 term in the fragmentation function for a gluon to split into heavy quarkonium states is calculated to order alpha_s^2. The gauge-invariant definition of the fragmentation function by Collins and
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details neces
We calculate the NLO corrections for the gluon fragmentation functions to a heavy quark-antiquark pair in ${^{1}hspace{-0.6mm}S_{0}^{[1]}}$ or ${^{1}hspace{-0.6mm}S_{0}^{[8]}}$ state within NRQCD factorization. We use integration-by-parts reduction t
We derive a full formula for the energy level of a heavy quarkonium state identified by the quantum numbers $n$, $ell$, $s$ and $j$, up to ${cal O}(alpha_s^5 m)$ and ${cal O}(alpha_s^5 m log alpha_s)$ in perturbative QCD. The QCD Bethe logarithm is g
We present new sets of fragmentation functions in next-to-leading order QCD that are determined from e+e- annihilation data of inclusive particle production. In addition to the O(alpha_s) unpolarized cross section the longitudinal cross section is al