ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective 2p-2h intruder states in $^{118}$Sn studied via $beta$-decay of $^{118}$In using GRIFFIN

228   0   0.0 ( 0 )
 نشر من قبل Adam Garnsworthy
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-lying structure of semi-magic $^{118}$Sn has been investigated through the $beta$-decay of $^{118}$In ($T_{1/2}=4.45$ min) to study shape coexistence via the reduced transition probabilities of states in the 2p-2h proton intruder band. This high-statistics study was carried out at TRIUMF-ISAC with the GRIFFIN spectrometer. In total, 99 transitions have been placed in the level scheme with 43 being newly observed. Three low-lying $gamma$-ray transitions with energies near 285 keV have been resolved from which the 2$^+_{mathrm{intr.}} rightarrow 0^+_{mathrm{intr.}}$ 284.52-keV transition was determined to have half of the previous branching fraction leading to a $B(E2;2^+_2rightarrow 0^+_2)$ of 21(4) W.u. compared to 39(7) W.u. from the previous measurement. Calculations using $sd$ IBM-2 with mixing have also been made to compare the experimental $B(E2)$ values to the theoretical values and to make comparisons to the $^{114,116}$Sn isotopes previously studied using the same theoretical model.

قيم البحث

اقرأ أيضاً

The effects of the phonon-phonon coupling on the beta-decay rates of neutron-rich nuclei are studied in a microscopic model based on Skyrme-type interactions. The approach uses a finite-rank separable approximation of the Skyrme-type particle-hole (p -h) residual interaction. Very large two-quasiparticle spaces can thus be treated. A redistribution of the Gamow-Teller (G-T) strength is found due to the tensor correlations and the 2p-2h fragmentation of G-T states. As a result, the beta-decay half-lives are decreased significantly. Using the Skyrme interaction SGII together with a volume-type pairing interaction we illustrate this reduction effect by comparing with available experimental data for the Ni isotopes and neutron-rich N=50 isotones. We give predictions for 76Fe and 80Ni in comparison with the case of the doubly-magic nucleus 78Ni which is an important waiting point in the r-process.
The $beta$-decay of neutron-rich $^{129}$In into $^{129}$Sn was studied using the GRIFFIN spectrometer at the ISAC facility at TRIUMF. The study observed the half-lives of the ground state and each of the $beta$-decaying isomers. The level scheme of $^{129}$Sn has been expanded with thirty-one new $gamma$-ray transitions and nine new excited levels, leading to a re-evaluation of the $beta$-branching ratios and level spin assignments. The observation of the $beta$-decay of the (29/2$^{+}$) 1911-keV isomeric state in $^{129}$In is reported for the first time, with a branching ratio of 2.0(5)$%$.
Spectroscopy of doubly magic $^{132}_{50}$Sn$_{82}$ has been performed with the GRIFFIN spectrometer at TRIUMF-ISAC following the $beta$ decay of $^{132}_{49}$In$_{83}$. The analysis has allowed for the placement of a total of 70 transitions and 29 e xcited states in $^{132}$Sn. Detailed spectroscopy has also been performed on $^{131}$Sb, resulting from the $beta$ decay of $^{131}$Sn, produced from the $beta$-delayed neutron decay of $^{132}$In. Measurement of $gamma$-rays in both $^{131}$Sn and $^{131}$Sb has led to the determination of the $beta$-delayed neutron emission probability, $P_{n}$, from $^{132}$In. This is the first time the $P_{n}$ has been measured for this nucleus using $gamma$ spectroscopy, and the new value of 12.3(4)% is consistent with the most recent $beta-n$ counting experiment. Additionally, $gamma$-$gamma$ angular correlations have been performed in $^{132}$Sn, supporting the spin assignments of several excited states. Novel ab initio calculations are presented which describe several of the excited states, and these are compared to the experimental spectrum.
In previous publications, we presented evidence for the importance of spin in determining capture and evaporation residue cross sections in the synthesis of heavy nuclei. We extend the previous calculations which dealt with nuclei where ZCN is less t han 110 to the region of ZCN = 111-118. We deduce a new systematics of the fusion probability for these reactions
Resonances just above the proton threshold in 30S affect the 29P(p,gamma)30S reaction under astrophysical conditions. The (p,gamma)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton and gamma partial widths of resonances in 30S. The widths are determined from the beta-2p and beta-p-gamma decay of 31Ar, which is produced at the ISOLDE facility at the European research organization CERN. Experimental limits on the ratio between the proton and gamma partial widths for astrophysical relevant levels in 30S have been found for the first time. A level at 4688(5) keV is identified in the gamma spectrum, and an upper limit on the proton to gamma width of 0.26 (95 % C.L.) is found. In the two-proton spectrum two levels at 5227(3) keV and 5847(4) keV are identified. These levels are previously seen to gamma decay and upper limits on the gamma to proton width of 0.5 and 9, respectively, (95 % C.L.) are found, where the latter differs from previous calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا