ترغب بنشر مسار تعليمي؟ اضغط هنا

Casimir effect between dissimilar materials: a test for the proximity theorem

104   0   0.0 ( 0 )
 نشر من قبل Cecilia Noguez
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate exactly the Casimir force between a spherical particle and a plane, both with arbitrary dielectric properties, in the non-retarded limit. Using a Spectral Representation formalism, we show that the Casimir force of a sphere made of a material A and a plane made of a material B, differ from the case when the sphere is made of B, and the plane is made of A. The differences in energy and force show the importance of the geometry, and make evident the necessity of realistic descriptions of the sphere-plane system beyond the Proximity Theorem approximation.



قيم البحث

اقرأ أيضاً

We calculate the Casimir force or dispersive van der Waals force between a spherical nanoparticle and a planar substrate, both with arbitrary dielectric properties. We show that the force between a sphere and a plane can be calculated through the int eracting surface plasmons of the bodies. Using a Spectral Representation formalism, we show that the force of a sphere made of a material A and a plane made of a material B, differ from the case when the sphere is made of B, and the plane is made of A. We found that the difference depends on the plasma frequency of the materials, the geometry, and the distance of separation between sphere and plane. The differences show the importance of the geometry, and make evident the necessity of realistic descriptions of the sphere-plane system beyond the Derjaguin Approximation or Proximity Theorem Approximation.
We investigate how photo-induced topological phase transitions and the magnetic-field-induced quantum Hall effect simultaneously influence the Casimir force between two parallel sheets of staggered two-dimensional (2D) materials of the graphene famil y. We show that the interplay between these two effects enables on-demand switching of the force between attractive and repulsive regimes while keeping its quantized characteristics. We also show that doping these 2D materials below their first Landau level allows one to probe the photoinduced topology in the Casimir force without the difficulties imposed by a circularly polarized laser. We demonstrate that the magnetic field has a huge impact on the thermal Casimir effect for dissipationless materials, where the quantized aspect of the energy levels leads to a strong repulsion that could be measured even at room temperature.
100 - F.E. Barone , F.A. Barone 2014
In a previous work we formulated a model of semitransparent dielectric surfaces, coupled to the electromagnetic field by means of an effective potential. Here we consider a setup with two dissimilar mirrors, and compute exactly the correction undergo ne by the photon propagator due to the presence of both plates. It turns out that this new propagator is continuous all over the space and, in the appropriate limit, coincides with the one used to describe the Casimir effect between perfect conductors. The amended Green function is then used to calculate the Casimir energy between the uniaxial dielectric surfaces described by the model, and a numerical analysis is carried out to highlight the peculiar behavior of the interaction between the mirrors.
The dynamical Casimir effect is an intriguing phenomenon in which photons are generated from vacuum due to a non-adiabatic change in some boundary conditions. In particular, it connects the motion of an accelerated mechanical mirror to the generation of photons. While pioneering experiments demonstrating this effect exist, a conclusive measurement involving a mechanical generation is still missing. We show that a hybrid system consisting of a piezoelectric mechanical resonator coupled to a superconducting cavity may allow to electro-mechanically generate measurable photons from vacuum, intrinsically associated to the dynamical Casimir effect. Such an experiment may be achieved with current technology, based on film bulk acoustic resonators directly coupled to a superconducting cavity. Our results predict a measurable photon generation rate, which can be further increased through additional improvements such as using superconducting metamaterials.
We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual an alysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrixation-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا