ﻻ يوجد ملخص باللغة العربية
A portion of light scalar dark matter, especially axions, may organize into gravitationally bound clumps (stars) and be present in large number in the galaxy today. It is therefore of utmost interest to determine if there are novel observational signatures of this scenario. Work has shown that for moderately large axion-photon couplings, such clumps can undergo parametric resonance into photons, for clumps above a critical mass $M^{star}_c$ determined precisely by some of us in Ref. [1]. In order to obtain a clump above the critical mass in the galaxy today would require mergers. In this work we perform full 3-dimensional simulations of pairs of axion clumps and determine the conditions under which mergers take place through the emission of scalar waves, including analyzing head-on and non-head-on collisions, phase dependence, and relative velocities. Consistent with other work in the literature, we find that the final mass from the merger $M^{star}_{text{final}}approx 0.7(M^{star}_1+M^{star}_2)$ is larger than each of the original clump masses (for $M^{star}_1sim M^{star}_2$). Hence, it is possible for sub-critical mass clumps to merge and become super-critical and therefore undergo parametric resonance into photons. We find that mergers are expected to be kinematically allowed in the galaxy today for high Peccei-Quinn scales, which is strongly suggested by unification ideas, although the collision rate is small. While mergers can happen for axions with lower Peccei-Quinn scales due to statistical fluctuations in relative velocities, as they have a high collision rate. We estimate the collision and merger rates within the Milky Way galaxy today. We find that a merger leads to a flux of energy on earth that can be appreciable and we mention observational search strategies.
Axion is a popular candidate for dark matter particles. Axionic dark matter may form Bose-Einstein condensate and may be gravitationally bound to form axion clumps. Under the presence of electromagnetic waves with frequency $omega=m_{a}/2$, where $m_
We propose a multi-messenger probe of QCD axion Dark Matter based on observations of black hole-neutron star binary inspirals. It is suggested that a dense Dark Matter spike may grow around intermediate mass black holes ($10^{3}-10^{5} mathrm{,M_{odo
We discuss a possible principle for detecting dark matter axions in galactic halos. If axions constitute a condensate in the Milky Way, stimulated emissions of the axions from a type of excitation in condensed matter can be detectable. We provide gen
We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, w
We present a novel mechanism for Sommerfeld enhancement for dark matter interactions without the need for light mediators. Considering a model for two-component scalar dark matter with a triple coupling, we find that there appears an $u$-channel reso