ﻻ يوجد ملخص باللغة العربية
We set conservative, robust constraints on the annihilation and decay of dark matter into various Standard Model final states under various assumptions about the distribution of the dark matter in the Milky Way halo. We use the inclusive photon spectrum observed by the Fermi Gamma-ray Space Telescope through its main instrument, the Large-Area Telescope (LAT). We use simulated data to first find the optimal regions of interest in the gamma-ray sky, where the expected dark matter signal is largest compared with the expected astrophysical foregrounds. We then require the predicted dark matter signal to be less than the observed photon counts in the a priori optimal regions. This yields a very conservative constraint as we do not attempt to model or subtract astrophysical foregrounds. The resulting limits are competitive with other existing limits, and, for some final states with cuspy dark-matter distributions in the Galactic Center region, disfavor the typical cross section required during freeze-out for a weakly interacting massive particle (WIMP) to obtain the observed relic abundance.
The extended excess toward the Galactic Center (GC) in gamma rays inferred from Fermi-LAT observations has been interpreted as being due to dark matter (DM) annihilation. Here, we perform new likelihood analyses of the GC and show that, when includin
Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Flux upper limits are presented for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray back
New and complimentary constraints are placed on the spin-independent interactions of dark matter with baryonic matter. Similar to the Earth and other planets, the Moon does not have any major internal heat source. We derive constraints by comparing t
It has been argued that the existence of old neutron stars excludes the possibility of non-annihilating light bosonic dark matter, such as that arising in asymmetric dark matter scenarios. If non-annihilating dark matter is captured by neutron stars,
We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope in the Milky Way Halo region searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints