ﻻ يوجد ملخص باللغة العربية
In this paper, we deal with the problem of jointly determining the optimal coding strategy and the scheduling decisions when receivers obtain layered data from multiple servers. The layered data is encoded by means of Prioritized Random Linear Coding (PRLC) in order to be resilient to channel loss while respecting the unequal levels of importance in the data, and data blocks are transmitted simultaneously in order to reduce decoding delays and improve the delivery performance. We formulate the optimal coding and scheduling decisions problem in our novel framework with the help of Markov Decision Processes (MDP), which are effective tools for modeling adapting streaming systems. Reinforcement learning approaches are then proposed to derive reduced computational complexity solutions to the adaptive coding and scheduling problems. The novel reinforcement learning approaches and the MDP solution are examined in an illustrative example for scalable video transmission. Our methods offer large performance gains over competing methods that deliver the data blocks sequentially. The experimental evaluation also shows that our novel algorithms offer continuous playback and guarantee small quality variations which is not the case for baseline solutions. Finally, our work highlights the advantages of reinforcement learning algorithms to forecast the temporal evolution of data demands and to decide the optimal coding and scheduling decisions.
We consider the setting of distributed storage system where a single file is subdivided into smaller fragments of same size which are then replicated with a common replication factor across servers of identical cache size. An incoming file download r
This work investigates a system where each user aims to retrieve a scalar linear function of the files of a library, which are Maximum Distance Separable coded and stored at multiple distributed servers. The system needs to guarantee robust decoding
Sparse random linear network coding (SRLNC) used as a class of erasure codes to ensure the reliability of multicast communications has been widely investigated. However, an exact expression for the decoding success probability of SRLNC is still unkno
This paper focuses on mitigating the impact of stragglers in distributed learning system. Unlike the existing results designed for a fixed number of stragglers, we developed a new scheme called Adaptive Gradient Coding(AGC) with flexible tolerance of
Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control p