ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoresistance due to Broken C4 Symmetry in Cubic B20 Chiral Magnets

109   0   0.0 ( 0 )
 نشر من قبل Sunxiang Huang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii-Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry. We present a microscopic theory, a minimal theory with two spin-orbit terms, that satisfies all the symmetry requirements and accounts for the transport experiments.



قيم البحث

اقرأ أيضاً

Chiral magnetic Mn$_x$Fe$_{1-x}$Ge compounds have an antisymmetric exchange interaction that is tunable with the manganese stoichiometric fraction, $x$. Although millimeter-scale, polycrystalline bulk samples of this family of compounds have been produced, thin-fi
361 - S. X. Huang , Jian Kang , Fei Chen 2014
The B20 magnets with the Dzyaloshinskii-Moriya (D-M) interaction exhibit spin helix and Skyrmion spin textures unattainable in traditional Heisenberg ferromagnets. We have determined the intrinsic resistivity of the spin helix, which is a macroscopic Bloch domain wall, in B20 (Fe-Co)Si magnets. We found a universal resistance ratio of gamma = 1.35 with current parallel and perpendicular to the helix, independent of composition and temperature. This gamma value is much smaller than 3, the well-known minimum value for domain wall resistivity in traditional ferromagnets, due to the significant spin-orbit coupling in the B20 magnets.
Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects. Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using analytical and numerical methods. The far field of these dislocations is universal and classified by an integer strength $ u$ that characterizes the winding of magnetic moments. We demonstrate that a rich variety of dislocation-core structures can be realized even for the same strength $ u$. In particular, the magnetization at the core can be either smooth or singular. We present a specific example with $ u = 1$ for which the core is composed of a chain of singular Bloch points. In general, screw dislocations carry a non-integer but finite skyrmion charge so that they can be efficiently manipulated by spin currents.
The recent discoveries of strikingly large zero-field Hall and Nernst effects in antiferromagnets Mn$_3$$X$, ($X$ = Sn, Ge) have brought the study of magnetic topological states to the forefront of condensed matter research and technological innovati on. These effects are considered fingerprints of Weyl nodes residing near the Fermi energy, promoting Mn$_3$$X$, ($X$ = Sn, Ge) as a fascinating platform to explore the elusive magnetic Weyl fermions. In this review, we provide recent updates on the insights drawn from experimental and theoretical studies of Mn$_3$$X$, ($X$ = Sn, Ge) by combining previous reports with our new, comprehensive set of transport measurements of high-quality Mn$_3$Sn and Mn$_3$Ge single crystals. In particular, we report magnetotransport signatures specific to chiral anomalies in Mn$_3$Ge and planar Hall effect in Mn$_3$Sn, which have not yet been found in earlier studies. The results summarized here indicate the essential role of magnetic Weyl fermions in producing the large transverse responses in the absence of magnetization.
Propagation character of spin wave was investigated for chiral magnets FeGe and Co-Zn-Mn alloys, which can host magnetic skyrmions near room temperature. On the basis of the frequency shift between counter-propagating spin waves, the magnitude and si gn of Dzyaloshinskii-Moriya (DM) interaction were directly evaluated. The obtained magnetic parameters quantitatively account for the size and helicity of skyrmions as well as their materials variation, proving that the DM interaction plays a decisive role in the skyrmion formation in this class of room-temperature chiral magnets. The propagating spin-wave spectroscopy can thus be an efficient tool to study DM interaction in bulk single-phase compounds. Our results also demonstrate a function of spin-wave diode based on chiral crystal structures at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا