ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn$_3$$X$, $X$ = Sn, Ge

241   0   0.0 ( 0 )
 نشر من قبل Satoru Nakatsuji
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discoveries of strikingly large zero-field Hall and Nernst effects in antiferromagnets Mn$_3$$X$, ($X$ = Sn, Ge) have brought the study of magnetic topological states to the forefront of condensed matter research and technological innovation. These effects are considered fingerprints of Weyl nodes residing near the Fermi energy, promoting Mn$_3$$X$, ($X$ = Sn, Ge) as a fascinating platform to explore the elusive magnetic Weyl fermions. In this review, we provide recent updates on the insights drawn from experimental and theoretical studies of Mn$_3$$X$, ($X$ = Sn, Ge) by combining previous reports with our new, comprehensive set of transport measurements of high-quality Mn$_3$Sn and Mn$_3$Ge single crystals. In particular, we report magnetotransport signatures specific to chiral anomalies in Mn$_3$Ge and planar Hall effect in Mn$_3$Sn, which have not yet been found in earlier studies. The results summarized here indicate the essential role of magnetic Weyl fermions in producing the large transverse responses in the absence of magnetization.



قيم البحث

اقرأ أيضاً

184 - Tomoya Higo , Danru Qu , Yufan Li 2018
The Weyl antiferromagnet Mn$_3$Sn has recently attracted significant attention as it exhibits various useful functions such as large anomalous Hall effect that are normally absent in antiferromagnets. Here we report the thin film fabrication of the s ingle phase of Mn$_3$Sn and the observation of the large anomalous Hall effect at room temperature despite its vanishingly small magnetization. Our work on the high-quality thin film growth of the Weyl antiferromagnet paves the path for developing the antiferromagnetic spintronics.
Antiferromagnetic spin motion at terahertz (THz) frequencies attracts growing interests for fast spintronics, however their smaller responses to external field inhibit device application. Recently the noncollinear antiferromagnet Mn$_3$Sn, a Weyl sem imetal candidate, was reported to show large anomalous Hall effect (AHE) at room temperature comparable to ferromagnets. Dynamical aspect of such large responses is an important issue to be clarified for future THz data processing. Here the THz anomalous Hall conductivity in Mn$_3$Sn thin films is investigated by polarization-resolved spectroscopy. Large anomalous Hall conductivity Re $sigma_{xy} (omega) sim$ 20 $rm{Omega^{-1} cm^{-1}}$ at THz frequencies is clearly observed as polarization rotation. In contrast, Im $sigma_{xy} (omega)$ is small up to a few THz, showing that the AHE remains dissipationless over a large frequency range. A peculiar temperature dependence corresponding to the breaking/recovery of symmetry in the spin texture is also discussed. Observation of the THz AHE at room temperature demonstrates the ultrafast readout for the antiferromagnetic spintronics using Mn$_3$Sn and will also open new avenue for studying nonequilibrium dynamics in Weyl antiferromagnets.
Taking the non-collinear antiferromagnetic hexagonal Heusler compound Mn$_3$Ge as a reference system, the contributions to linear response phenomena arising solely from the chiral coplanar and non-coplanar spin configurations are investigated. Orbita l moments, X-ray absorption, anomalous and spin Hall effects, as well as corresponding spin-orbit torques and Edelstein polarizations are studied depending on a continuous variation of the polar angle relative to the Kagome planes of corner-sharing triangles between the non-collinear antiferromagnetic and the ferromagnetic limits. By scaling the speed of light from the relativistic Dirac case to the non-relativistic limit the chirality-induced or topological contributions can be identified by suppressing the spin-orbit coupling.
The purpose of this study was to investigate the magnetotransport properties of the Ge(0.743)Pb(0.183)Mn(0.074)Te mixed crystal. The results of magnetization measurements indicated that the compound is a spin-glass-like diluted magnetic semiconductor with critical temperature TSG = 97.5 K. Nanoclusters in the sample are observed. Both, matrix and clusters are magnetically active. Resistivity as a function of temperature has a minimum at 30 K. Below the minimum a variable-range hopping is observed, while above the minimum a metallic-like behavior occurs. The crystal has high hole concentration, p = 6.6E20 cm-3, temperature-independent. Magnetoresistance amplitude changes from -0.78 to 1.18% with increase of temperature. In the magnetotransport measurements we observed the anomalous Hall effect (AHE) with hysteresis loops. Calculated AHE coefficient, RS = 2.0E6 m3/C, is temperature independent. The analysis indicates the extrinsic skew scattering mechanism to be the main physical mechanism responsible for AHE in Ge(0.743)Pb(0.183)Mn(0.074)Te alloy.
Recent reports of a large anomalous Hall effect (AHE) in ferromagnetic Weyl semimetals (FM WSM) have led to a resurgence of interest in this enigmatic phenomenon. However, due to a lack of tunable materials, the interplay between the intrinsic mechan ism caused by Berry curvature and extrinsic mechanisms due to scattering remains unclear in FM WSMs. In this contribution, we present a thorough investigation of both the extrinsic and intrinsic AHE in a new family of FM WSMs, PrAlGe$_{1-x}$Si$_x$, where $x$ can be tuned continuously. From DFT calculations, we show that the two end members, PrAlGe and PrAlSi, have different Fermi surfaces but similar Weyl node structures. Experimentally, we observe moderate changes in the anomalous Hall coefficient ($R_S$) but significant changes in the ordinary Hall coefficient ($R_0$) in PrAlGe$_{1-x}$Si$_x$ as a function of $x$, confirming a change of Fermi surface. By comparing the magnitude of $R_0$ and $R_S$, we identify two regimes; $|R_0|<|R_S|$ when $xle0.5$ and $|R_0|>|R_S|$ when $x>0.5$. Through a detailed scaling analysis, we discover a universal anomalous Hall conductivity (AHC) from intrinsic contribution when $xle0.5$. Such universal AHC is absent when $x>0.5$. Thus, we point out the significance of the extrinsic mechanisms in FM WSMs and report the first observation of a transition from intrinsic to extrinsic AHE in PrAlGe$_{1-x}$Si$_x$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا