ﻻ يوجد ملخص باللغة العربية
Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects. Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using analytical and numerical methods. The far field of these dislocations is universal and classified by an integer strength $ u$ that characterizes the winding of magnetic moments. We demonstrate that a rich variety of dislocation-core structures can be realized even for the same strength $ u$. In particular, the magnetization at the core can be either smooth or singular. We present a specific example with $ u = 1$ for which the core is composed of a chain of singular Bloch points. In general, screw dislocations carry a non-integer but finite skyrmion charge so that they can be efficiently manipulated by spin currents.
In chiral magnets a magnetic helix forms where the magnetization winds around a propagation vector $mathbf{q}$. We show theoretically that a magnetic field $mathbf{B}_{perp}(t) perp mathbf{q}$, which is spatially homogeneous but oscillating in time,
Van der Waals (vdW) layered transition metal dichalcogenides (TMDCs) materials are emerging as one class of quantum materials holding novel optical and electronic properties. In particular, the bandgap tunability attractive for nanoelectronics techno
We exhaustively construct instanton solutions and elucidate their properties in one-dimensional anti-ferromagnetic chiral magnets based on the $O(3)$ nonlinear sigma model description of spin chains with the Dzyaloshinskii-Moriya (DM) interaction. By
Magnetic singularities, also known as magnetic monopoles or Bloch points, represent intriguingphenomena in nanomagnetism. We show that a pair of coupled Bloch points may appear as alocalized, stable state in cubic chiral magnets. Detailed analysis is
The X-cube model, a prototypical gapped fracton model, has been shown to have a foliation structure. That is, inside the 3+1D model, there are hidden layers of 2+1D gapped topological states. A screw dislocation in a 3+1D lattice can often reveal non