ﻻ يوجد ملخص باللغة العربية
Cells can sense and respond to mechanical signals over relatively long distances across fibrous extracellular matrices. Here, we explore all of the key factors that influence long range force transmission in cell-populated collagen matrices: alignment of collagen fibers, responses to applied force, strain stiffening properties of the aligned fibers, aspect ratios of the cells, and the polarization of cellular contraction. A constitutive law accounting for mechanically-driven collagen fiber reorientation is proposed. We systematically investigate the range of collagen fiber alignment using both finite element simulations and analytical calculations. Our results show that tension-driven collagen fiber alignment plays a crucial role in force transmission. Small critical stretch for fiber alignment, large fiber stiffness and fiber strain hardening behavior enable long-range interaction. Furthermore, the range of collagen fiber alignment for elliptical cells with polarized contraction is much larger than that for spherical cells with diagonal contraction. A phase diagram showing the range of force transmission as a function of cell shape and polarization and matrix properties is presented. Our results are in good agreement with recent experiments, and highlight the factors that influence long-range force transmission, in particular tension-driven alignment of fibers. Our work has important relevance to biological processes including development, cancer metastasis and wound healing, suggesting conditions whereby cells communicate over long distances.
Networks with only central force interactions are floppy when their average connectivity is below an isostatic threshold. Although such networks are mechanically unstable, they can become rigid when strained. It was recently shown that the transition
Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body (FB) formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The ph
The near-surface swimming patterns of bacteria are strongly determined by the hydrodynamic interactions between bacteria and the surface, which trap bacteria in smooth circular trajectories that lead to inefficient surface exploration. Here, we show
Gaining access to the cell interior is fundamental for many applications, such as electrical recording, drug and biomolecular delivery. A very promising technique consists of culturing cells on nano/micro pillars. The tight adhesion and high local de
The microaerophilic magnetotactic bacterium Magnetospirillum gryphiswaldense swims along magnetic field lines using a single flagellum at each cell pole. It is believed that this magnetotactic behavior enables cells to seek optimal oxygen concentrati