ﻻ يوجد ملخص باللغة العربية
The near-surface swimming patterns of bacteria are strongly determined by the hydrodynamic interactions between bacteria and the surface, which trap bacteria in smooth circular trajectories that lead to inefficient surface exploration. Here, we show by combining experiments and a data-driven mathematical model that surface exploration of enterohemorrhagic Escherichia coli (EHEC) -- a pathogenic strain of E. coli causing serious illnesses such as bloody diarrhea -- results from a complex interplay between motility and transient surface adhesion events. These events allow EHEC to break the smooth circular trajectories and regulate their transport properties by the use stop-adhesion events that lead to a characteristic intermittent motion on surfaces. We find that the experimentally measured frequency of stop-adhesion events in EHEC is located at the value predicted by the developed mathematical model that maximizes bacterial surface diffusivity. We indicate that these results and the developed model apply to other bacterial strains on different surfaces, which suggests that swimming bacteria use transient adhesion to regulate surface motion.
We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by no
It is well known that flagellated bacteria swim in circles near surfaces. However, recent experiments have shown that a sulfide-oxidizing bacterium named Thiovulum majus can transition from swimming in circles to a surface bound state where it stops
Periodic reversals of the direction of motion in systems of self-propelled rod shaped bacteria enable them to effectively resolve traffic jams formed during swarming and maximize their swarming rate. In this paper, a connection is found between a mic
From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic
We present a multi-scale model to study the attachment of spherical particles with a rigid core, coated with binding ligands and in equilibrium with the surrounding, quiescent fluid medium. This class of fluid-immersed adhesion is widespread in many