ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Raman O VI and related lines in classical novae

74   0   0.0 ( 0 )
 نشر من قبل Steven Shore
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We critically examine the recent claimed detection of Raman scattered O VI at around 6830AA in the iron curtain stage spectra of the classical CO nova V339 Del. The observed line variations are compatible in profile and timing of emission line strength with an excited state transition of neutral carbon. Line formation in classical nova ejecta is physically very different from that in symbiotic binaries, in which the O VI emission line is formed within the wind of the companion red giant at low differential velocity. The ejecta velocity and density structure prevent the scattering from producing analogous features. There might , however, be a broadband spectropolarimetric signature of the Raman process and also Rayleigh scattering at some stage in the expansion. We show that the neutral carbon spectrum, hitherto under-exploited for novae, is especially useful as a probe of the structure of the ejecta during the early, optically thick stages of the expansion

قيم البحث

اقرأ أيضاً

We report spectroscopic observations of the resonance lines of singly ionized $^{7}$Be in the blue-shifted absorption line systems found in the post-outburst spectra of two classical novae -- V5668 Sgr (Nova Sagittarii 2015 No.2) and V2944 Oph (Nova Ophiuchi 2015). The unstable isotope, $^{7}$Be, should has been created during the thermonuclear runaway (TNR) of these novae and decays to form $^{7}$Li within a short period (a half-life of 53.22 days). Confirmations of $^{7}$Be are the second and the third ones following the first case found in V339 Del by Tajitsu et al. (2015). The blue-shifted absorption line systems in both novae are clearly divided into two velocity components, both of which contain $^{7}$Be. This means that the absorbing gases in both velocity components consist of products of TNR. We estimate amounts of $^{7}$Be produced during outbursts of both novae and conclude that significant $^{7}$Li should have been created. These findings strongly suggest that the explosive production of $^{7}$Li via the reaction $^{3}$He($alpha$,$gamma$)$^{7}$Be and subsequent decay to $^{7}$Li occurs frequently among classical novae and contributes to the process of the Galactic Li enrichment.
Sunspots are locations on the Sun where unique atmospheric conditions prevail. In particular, the very low temperatures found above sunspots allow the emission of H_2 lines. In this study we are interested in the radiation emitted by sunspots in the O VI lines at 1031.96 A and 1037.60 A. We use SOHO/SUMER observations of a sunspot performed in March 1999 and investigate the interaction between the O VI lines and a H_2 line at 1031.87 A found in the Werner band. The unique features of sunspots atmospheres may very well have important implications regarding the illumination of coronal O+5 ions in the low corona, affecting our interpretation of Doppler dimming diagnostics.
We present high resolution spectroscopy of the yellow symbiotic star AG Draconis with ESPaDOnS at the {it Canada-France-Hawaii Telescope}. Our analysis is focused on the profiles of Raman scattered ion{O}{VI} features centered at 6825 AA and 7082 AA, which are formed through Raman scattering of ion{O}{VI}$lambdalambda$1032 and 1038 with atomic hydrogen. These features are found to exhibit double component profiles with conspicuously enhanced red parts. Assuming that the ion{O}{vi} emission region constitutes a part of the accretion flow around the white dwarf, Monte Carlo simulations for ion{O}{VI} line radiative transfer are performed to find that the overall profiles are well fit with the accretion flow azimuthally asymmetric with more matter on the entering side than on the opposite side. As the mass loss rate of the giant component is increased, we find that the flux ratio $F(6825)/F(7082)$ of Raman 6825 and 7082 features decreases and that our observational data are consistent with a mass loss rate $dot Msim 2 times 10^{-7} {rm M_{odot} yr^{-1}}$. We also find that additional bipolar components moving away with a speed $sim 70{rm km s^{-1}}$ provide considerably improved fit to the red wing parts of Raman features. The possibility that the two Raman profiles differ is briefly discussed in relation to the local variation of the ion{O}{VI} doublet flux ratio.
Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been d iscovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNe and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (a) outburst amplitude smaller than 14.5 - 4.5 * log(t_3), (b) orbital period >0.6 days, (c) infrared colors of J-H > 0.7 mag and H-K > 0.1 mag, (d) FWHM of H-alpha > 2000 km/s, (e) high excitation lines, such as Fe X or He II near peak, (f) eruption light curves with a plateau, and (g) white dwarf mass greater than 1.2 M_solar. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction amongst the known CNe using three methods to get 24% +/- 4%, 12% +/- 3%, and 35% +/- 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.
Opacity is a property of many plasmas, and it is normally expected that if an emission line in a plasma becomes optically thick, its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfe r calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depth. Previous observational studies have focused on stellar point sources, and here we investigate the spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038 A) intensity ratio of O VI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the Solar and Heliospheric Observatory (SoHO) satellite. We find several I(1032 A)/I(1038 A) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. Agreement between observation and theory is excellent, and confirms that the O VI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا