ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying and Quantifying Recurrent Novae Masquerading as Classical Novae

119   0   0.0 ( 0 )
 نشر من قبل Ashley Pagnotta
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been discovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNe and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (a) outburst amplitude smaller than 14.5 - 4.5 * log(t_3), (b) orbital period >0.6 days, (c) infrared colors of J-H > 0.7 mag and H-K > 0.1 mag, (d) FWHM of H-alpha > 2000 km/s, (e) high excitation lines, such as Fe X or He II near peak, (f) eruption light curves with a plateau, and (g) white dwarf mass greater than 1.2 M_solar. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction amongst the known CNe using three methods to get 24% +/- 4%, 12% +/- 3%, and 35% +/- 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.



قيم البحث

اقرأ أيضاً

The unprecedented sky coverage and observing cadence of the All-Sky Automated Survey for SuperNovae (ASAS-SN) has resulted in the discovery and continued monitoring of a large sample of Galactic transients. The vast majority of these are accretion-po wered dwarf nova outbursts in cataclysmic variable systems, but a small subset are thermonuclear-powered classical novae. Despite improved monitoring of the Galaxy for novae from ASAS-SN and other surveys, the observed Galactic nova rate is still lower than predictions. One way classical novae could be missed is if they are confused with the much larger population of dwarf novae. Here, we examine the properties of 1617 dwarf nova outbursts detected by ASAS-SN and compare them to classical novae. We find that the mean classical nova brightens by ~11 magnitudes during outburst, while the mean dwarf nova brightens by only ~5 magnitudes, with the outburst amplitude distributions overlapping by roughly 15%. For the first time, we show that the amplitude of an outburst and the time it takes to decline by two magnitudes from maximum are positively correlated for dwarf nova outbursts. For classical novae, we find that these quantities are negatively correlated, but only weakly, compared to the strong anti-correlation of these quantities found in some previous work. We show that, even if located at large distances, only a small number of putative dwarf novae could be mis-classified classical novae suggesting that there is minimal confusion between these populations. Future spectroscopic follow-up of these candidates can show whether any are indeed classical novae.
The reported positions of 964 suspected nova eruptions in M31 recorded through the end of calendar year 2013 have been compared in order to identify recurrent nova candidates. To pass the initial screen and qualify as a recurrent nova candidate two o r more eruptions were required to be coincident within 0.1, although this criterion was relaxed to 0.15 for novae discovered on early photographic patrols. A total of 118 eruptions from 51 potential recurrent nova systems satisfied the screening criterion. To determine what fraction of these novae are indeed recurrent the original plates and published images of the relevant eruptions have been carefully compared. This procedure has resulted in the elimination of 27 of the 51 progenitor candidates (61 eruptions) from further consideration as recurrent novae, with another 8 systems (17 eruptions) deemed unlikely to be recurrent. Of the remaining 16 systems, 12 candidates (32 eruptions) were judged to be recurrent novae, with an additional 4 systems (8 eruptions) being possibly recurrent. It is estimated that ~4% of the nova eruptions seen in M31 over the past century are associated with recurrent novae. A Monte Carlo analysis shows that the discovery efficiency for recurrent novae may be as low as 10% that for novae in general, suggesting that as many as one in three nova eruptions observed in M31 arise from progenitor systems having recurrence times <~100 yr. For plausible system parameters, it appears unlikely that recurrent novae can provide a significant channel for the production of Type Ia supernovae.
Models have long predicted that the frequency-averaged masses of white dwarfs in Galactic classical novae are twice as large as those of field white dwarfs. Only a handful of dynamically well-determined nova white dwarf masses have been published, le aving the theoretical predictions poorly tested. The recurrence time distributions and mass accretion rate distributions of novae are even more poorly known. To address these deficiencies, we have combined our extensive simulations of nova eruptions with the Strope et al (2010) and Schaefer et al (2010) databases of outburst characteristics of Galactic classical and recurrent novae to determine the masses of 92 white dwarfs in novae. We find that the mean mass (frequency averaged mean mass) of 82 Galactic classical novae is 1.06 (1.13) Msun, while the mean mass of 10 recurrent novae is 1.31 Msun. These masses, and the observed nova outburst amplitude and decline time distributions allow us to determine the long-term mass accretion rate distribution of classical novae. Remarkably, that value is just 1.3 x 10^{-10} Msun/yr, which is an order of magnitude smaller than that of cataclysmic binaries in the decades before and after classical nova eruptions. This predicts that old novae become low mass transfer rate systems, and hence dwarf novae, for most of the time between nova eruptions. We determine the mass accretion rates of each of the 10 known Galactic RN, finding them to be in the range 10^{-7} - 10^{-8} $ Msun/yr. We are able to predict the recurrence time distribution of novae and compare it with the predictions of population synthesis models.
We present a preliminary comparison of the post-nova population with that of general cataclysmic variables (CVs). We particularly focus on the mass-transfer rate and its potential relation to the nova eruption. We find that the known post-nova sample exclusively consists of high mass-transfer CVs, but that this is more likely to be due to the shorter recurrent time for those systems, rather than the mass-transfer rate being affected by the eruption. Nevertheless, we find evidence for such an effect for specific post-novae, and that it is potentially related to the binary separation and to presence or absence of an accretion disc.
142 - Marina Orio 2012
X-ray grating spectra have opened a new window on the nova physics. High signal-to-noise spectra have been obtained for 12 novae after the outburst in the last 13 years with the Chandra and XMM-Newton gratings. They offer the only way to probe the temperature, effective gravity and chemical composition of the hydrogen burning white dwarf before it turns off. These spectra also allow an analysis of the ejecta, which can be photoionized by the hot white dwarf, but more often seem to undergo collisional ionization. The long observations required for the gratings have revealed semi-regular and irregular variability in X-ray flux and spectra. Large short term variability is especially evident in the first weeks after the ejecta have become transparent to the central supersoft X-ray source. Thanks to Chandra and XMM-Newton, we have discovered violent phenomena in the ejecta, discrete shell ejection, and clumpy emission regions. As expected, we have also unveiled the white dwarf characteristics. The peak white dwarf effective temperature in the targets of our samples varies between ~400,000 K and over a million K, with most cases closer to the upper end, although for two novae only upper limits around 200,000 K were obtained. A combination of results from different X-ray satellites and instruments, including Swift and ROSAT, shows that the shorter is the supersoft X-ray phase, the lower is the white dwarf peak effective temperature, consistently with theoretical predictions. The peak temperature is also inversely correlated with t(2) the time for a decay by 2 mag in optical. I strongly advocate the use of white dwarf atmospheric models to obtain a coherent physical picture of the hydrogen burning process and of the surrounding ejecta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا