ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure of the 344-type superconductors La3(Ni;Pd)4(Si;Ge)4 by ab initio calculations

111   0   0.0 ( 0 )
 نشر من قبل Maciej Winiarski
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic structures of superconducting ternaries: La3Ni4Si4, La3Ni4Ge4, La3Pd4Si4, La3Pd4Ge4, and their non-superconducting counterpart, La3Rh4Ge4, have been calculated employing the full-potential local-orbital method within the density functional theory. Our investigations were focused particularly on densities of states (DOSs) at the Fermi level with respect to previous experimental heat capacity data, and Fermi surfaces (FSs) being very similar for all considered here compounds. In each of these systems, the FS originating from several bands contains both holelike and electronlike sheets possessing different dimensionality, in particular quasi-two-dimensional cylinders with nesting properties. A comparative analysis of the DOSs and FSs in these 344-type systems as well as in nickel (oxy)pnictide and borocarbide superconductors indicates rather similar phonon mechanism of their superconductivity.


قيم البحث

اقرأ أيضاً

Band structures of pressure-induced CeNiGe3 and exotic BCS-like YNiGe3 superconductors have been calculated employing the full-potential local-orbital code. Both the local density approximation (LDA) and LDA+U treatment of the exchange-correlation en ergy were used. The investigations were focused on differences between electronic properties of both compounds. Our results indicate that the Ce-based system exhibits higher density of states at the Fermi level, dominated by the Ce 4f states, in contrast to its non f-electron counterpart. The Fermi surface (FS) of each compound originates from three bands and consists of both holelike and electronlike sheets. The specific FS nesting properties of only CeNiGe3 enable an occurrence of spin fluctuations of a helicoidal antiferromagnetic character that may lead to unconventional pairing mechanism in this superconductor. In turn, the topology of the FS in YNiGe3 reveals a possibility of multi-band superconductivity, which can explain the observed anomalous jump at Tc in its specific heat.
The reliable {it ab-initio} description of strongly correlated materials is a long-sought capability in condensed matter physics. The $GW$+EDMFT method is a promising scheme, which provides a self-consistent description of correlations and screening, and does not require user-provided parameters. In order to test the reliability of this approach we apply it to the experimentally well characterized perovskite compound Ca$_2$RuO$_4$, in which a temperature-dependent structural deformation drives a paramagnetic metal-insulator transition. Our results demonstrate that the nonlocal polarization and self-energy components introduced by $GW$ are essential for setting the correct balance between interactions and bandwidths, and that the $GW$+EDMFT scheme produces remarkably accurate predictions of the electronic properties of this strongly correlated material.
We present results of density functional theory (DFT) calculation of the structural supermodulation in BSCCO-2212 structure, and show that the supermodulation is indeed a spontaneous symmetry breaking of the nominal crystal symmetry, rather than a ph enomenon driven by interstitial O dopants. The structure obtained is in excellent quantitative agreement with recent x-ray studies, and reproduces several qualitative aspects of scanning tunnelling microscopy (STM) experiments as well. The primary structural modulation affecting the CuO_2 plane is found to be a buckling wave of tilted CuO_5 half-octahedra, with maximum tilt angle near the phase of the supermodulation where recent STM experiments have discovered an enhancement of the superconducting gap. We argue that the tilting of the half-octahedra and concommitant planar buckling are directly modulating the superconducting pair interaction.
Thermoelectric properties of the system La$_2$NiO$_{4+delta}$ have been studied ab initio. Large Seebeck coefficient values are predicted for the parent compound, and to some extent remain in the hole-doped metallic phase, accompanied of an increase in the conductivity. This system, due to its layered structure would be a suitable candidate for an improvement of its thermoelectric figure of merit by nanostructurization in thin films, that has already been shown to increase the electrical conductivity ($sigma$). Our calculations show that in the region around La$_2$NiO$_{4.05}$ the system has a large thermopower at high temperatures and also a substantially increased $sigma$. Films grown with this low-doping concentration will show an optimal relationship between thermopower and $sigma$. This result is obtained for various exchange-correlation schemes (correlated, uncorrelated and parameter-free) that we use to analyze the electronic structure of the hole-doped compound.
Resonant photoemission spectroscopy has been used to investigate the character of Fe 3d states in FeAl alloy. Fe 3d states have two different character, first is of itinerant nature located very close to the Fermi level, and second, is of less itiner ant (relatively localized character), located beyond 2 eV below the Fermi level. These distinct states are clearly distinguishable in the resonant photoemission data. Comparison between the results obtained from experiments and first principle based electronic structure calculation show that the origin of the itinerant character of the Fe 3d states is due to the ordered B2 structure, whereas the relatively less itinerant (localized) Fe 3d states are from the disorders present in the sample. The exchange splitting of the Fe 3s core level peak confirms the presence of local moment in this system. It is found that the itinerant electrons arise due to the hybridization between Fe 3d and Al 3s-3p states. Presence of hybridization is observed as a shift in the Al 2p core-level spectra as well as in the X-ray near edge absorption spectra towards lower binding energy. Our photoemission results are thus explained by the co-existence of ordered and disordered phases in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا