ﻻ يوجد ملخص باللغة العربية
We present results of density functional theory (DFT) calculation of the structural supermodulation in BSCCO-2212 structure, and show that the supermodulation is indeed a spontaneous symmetry breaking of the nominal crystal symmetry, rather than a phenomenon driven by interstitial O dopants. The structure obtained is in excellent quantitative agreement with recent x-ray studies, and reproduces several qualitative aspects of scanning tunnelling microscopy (STM) experiments as well. The primary structural modulation affecting the CuO_2 plane is found to be a buckling wave of tilted CuO_5 half-octahedra, with maximum tilt angle near the phase of the supermodulation where recent STM experiments have discovered an enhancement of the superconducting gap. We argue that the tilting of the half-octahedra and concommitant planar buckling are directly modulating the superconducting pair interaction.
Band structures of pressure-induced CeNiGe3 and exotic BCS-like YNiGe3 superconductors have been calculated employing the full-potential local-orbital code. Both the local density approximation (LDA) and LDA+U treatment of the exchange-correlation en
We present an ab initio $GW$ self-energy calculation of the electronic structure of LaNiO$_2$. With respect to density-functional theory we find that in $GW$ the La 4$f$ states undergo an important $+$2 eV upward shift from the Fermi level, while the
Based on the first-principles calculations, we have investigated the geometry, binding properties, density of states and band structures of the novel superconductor LaFe1-xCoxAsO and its parent compounds with the ZrCuSiAs structure. We demonstrate th
We propose an electron-phonon parameterization which reliably reproduces the geometry and harmonic frequencies of a real system. With respect to standard electron-phonon models, it adds a double-counting correction, which takes into account the latti
We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: Rf^+. We use the 4-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction (MRCI) model to tackle t