ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure of CeNiGe3 and YNiGe3 superconductors by ab initio calculations

119   0   0.0 ( 0 )
 نشر من قبل Maciej Winiarski
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Band structures of pressure-induced CeNiGe3 and exotic BCS-like YNiGe3 superconductors have been calculated employing the full-potential local-orbital code. Both the local density approximation (LDA) and LDA+U treatment of the exchange-correlation energy were used. The investigations were focused on differences between electronic properties of both compounds. Our results indicate that the Ce-based system exhibits higher density of states at the Fermi level, dominated by the Ce 4f states, in contrast to its non f-electron counterpart. The Fermi surface (FS) of each compound originates from three bands and consists of both holelike and electronlike sheets. The specific FS nesting properties of only CeNiGe3 enable an occurrence of spin fluctuations of a helicoidal antiferromagnetic character that may lead to unconventional pairing mechanism in this superconductor. In turn, the topology of the FS in YNiGe3 reveals a possibility of multi-band superconductivity, which can explain the observed anomalous jump at Tc in its specific heat.


قيم البحث

اقرأ أيضاً

Electronic structures of superconducting ternaries: La3Ni4Si4, La3Ni4Ge4, La3Pd4Si4, La3Pd4Ge4, and their non-superconducting counterpart, La3Rh4Ge4, have been calculated employing the full-potential local-orbital method within the density functional theory. Our investigations were focused particularly on densities of states (DOSs) at the Fermi level with respect to previous experimental heat capacity data, and Fermi surfaces (FSs) being very similar for all considered here compounds. In each of these systems, the FS originating from several bands contains both holelike and electronlike sheets possessing different dimensionality, in particular quasi-two-dimensional cylinders with nesting properties. A comparative analysis of the DOSs and FSs in these 344-type systems as well as in nickel (oxy)pnictide and borocarbide superconductors indicates rather similar phonon mechanism of their superconductivity.
We present results of density functional theory (DFT) calculation of the structural supermodulation in BSCCO-2212 structure, and show that the supermodulation is indeed a spontaneous symmetry breaking of the nominal crystal symmetry, rather than a ph enomenon driven by interstitial O dopants. The structure obtained is in excellent quantitative agreement with recent x-ray studies, and reproduces several qualitative aspects of scanning tunnelling microscopy (STM) experiments as well. The primary structural modulation affecting the CuO_2 plane is found to be a buckling wave of tilted CuO_5 half-octahedra, with maximum tilt angle near the phase of the supermodulation where recent STM experiments have discovered an enhancement of the superconducting gap. We argue that the tilting of the half-octahedra and concommitant planar buckling are directly modulating the superconducting pair interaction.
Resonant photoemission spectroscopy has been used to investigate the character of Fe 3d states in FeAl alloy. Fe 3d states have two different character, first is of itinerant nature located very close to the Fermi level, and second, is of less itiner ant (relatively localized character), located beyond 2 eV below the Fermi level. These distinct states are clearly distinguishable in the resonant photoemission data. Comparison between the results obtained from experiments and first principle based electronic structure calculation show that the origin of the itinerant character of the Fe 3d states is due to the ordered B2 structure, whereas the relatively less itinerant (localized) Fe 3d states are from the disorders present in the sample. The exchange splitting of the Fe 3s core level peak confirms the presence of local moment in this system. It is found that the itinerant electrons arise due to the hybridization between Fe 3d and Al 3s-3p states. Presence of hybridization is observed as a shift in the Al 2p core-level spectra as well as in the X-ray near edge absorption spectra towards lower binding energy. Our photoemission results are thus explained by the co-existence of ordered and disordered phases in the system.
We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: Rf^+. We use the 4-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction (MRCI) model to tackle t he complex electronic structure problem that combines strong relativistic effects and electron correlation. We determine the energies of the ground and the low-lying excited states of Rf+, which originate from the 7s^26d^1, 7s^16d^2, 7s^27p^1, and 7s^16d^17p^1 configurations. The results are discussed vis-`a-vis the lighter homologue, Hf^+ ion. We also assess the uncertainties of the predicted energy levels. The main purpose of the presented calculations is to provide a reliable prediction of the energy levels and to identify suitable metastable excited states that are good candidates for the planned ion-mobility-assisted laser spectroscopy studies.
We report the first-principles study of superconducting critical temperature and superconducting properties of Fe-based superconductors taking into account on the same footing phonon, charge and spin-fluctuation mediated Cooper pairing. We show that in FeSe this leads to a modulated s$pm$ gap symmetry, and that the antiferromagnetic paramagnons are the leading mechanism for superconductivity in FeSe, overcoming the strong repulsive effect of both phonons and charge pairing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا