ﻻ يوجد ملخص باللغة العربية
Scientific discoveries are increasingly driven by analyzing large volumes of image data. Many new libraries and specialized database management systems (DBMSs) have emerged to support such tasks. It is unclear, however, how well these systems support real-world image analysis use cases, and how performant are the image analytics tasks implemented on top of such systems. In this paper, we present the first comprehensive evaluation of large-scale image analysis systems using two real-world scientific image data processing use cases. We evaluate five representative systems (SciDB, Myria, Spark, Dask, and TensorFlow) and find that each of them has shortcomings that complicate implementation or hurt performance. Such shortcomings lead to new research opportunities in making large-scale image analysis both efficient and easy to use.
Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we c
Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analy
While manufacturers have been generating highly distributed data from various systems, devices and applications, a number of challenges in both data management and data analysis require new approaches to support the big data era. These challenges for
Big data benchmark suites must include a diversity of data and workloads to be useful in fairly evaluating big data systems and architectures. However, using truly comprehensive benchmarks poses great challenges for the architecture community. First,
In recent years, the size of big linked data has grown rapidly and this number is still rising. Big linked data and knowledge bases come from different domains such as life sciences, publications, media, social web, and so on. However, with the rapid