ترغب بنشر مسار تعليمي؟ اضغط هنا

Instanton calculus without equations of motion: semiclassics from monodromies of a Riemann surface

241   0   0.0 ( 0 )
 نشر من قبل Tobias Gulden
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Instanton calculations in semiclassical quantum mechanics rely on integration along trajectories which solve classical equations of motion. However in systems with higher dimensionality or complexified phase space these are rarely attainable. A prime example are spin-coherent states which are used e.g. to describe single molecule magnets (SMM). We use this example to develop instanton calculus which does not rely on explicit solutions of the classical equations of motion. Energy conservation restricts the complex phase space to a Riemann surface of complex dimension one, allowing to deform integration paths according to Cauchys integral theorem. As a result, the semiclassical actions can be evaluated without knowing actual classical paths. Furthermore we show that in many cases such actions may be solely derived from monodromy properties of the corresponding Riemann surface and residue values at its singular points. As an example, we consider quenching of tunneling processes in SMM by an applied magnetic field.



قيم البحث

اقرأ أيضاً

We present analytical implementation of conformal field theory on a compact Riemann surface. We consider statistical fields constructed from background charge modifications of the Gaussian free field and derive Ward identities which represent the Lie derivative operators in terms of the Virasoro fields and the puncture operators associated with the background charges. As applications, we derive Eguchi-Ooguris version of Wards equations and certain types of BPZ equations on a torus.
134 - I.V.Fialkovsky , M.A.Zubkov 2019
We propose a new version of Wigner-Weyl calculus for tight-binding lattice models. It allows to express various physical quantities through Weyl symbols of operators and Greens functions. In particular, Hall conductivity in the presence of varying an d arbitrarily strong magnetic field is represented using the proposed formalism as a topological invariant.
In this paper we compute gaugino and scalar condensates in N=1 supersymmetric gauge theories with and without massive adjoint matter, using localization formulae over the multi--instanton moduli space. Furthermore we compute the chiral ring relations among the correlators of the $N=1^*$ theory and check this result against the multi-instanton computation finding agreement.
In this work we demonstrate a simple way to implement the quantum inverse scattering method to find eigenstates of spin-1/2 XXX Gaudin magnets in an arbitrarily oriented magnetic field. The procedure differs vastly from the most natural approach whic h would be to simply orient the spin quantisation axis in the same direction as the magnetic field through an appropriate rotation. Instead, we define a modified realisation of the rational Gaudin algebra and use the quantum inverse scattering method which allows us, within a slightly modified implementation, to build an algebraic Bethe ansatz using the same unrotated reference state (pseudovacuum) for any external field. This common framework allows us to easily write determinant expressions for certain scalar products which would be highly non-trivial in the rotated system approach.
To any differential system $dPsi=PhiPsi$ where $Psi$ belongs to a Lie group (a fiber of a principal bundle) and $Phi$ is a Lie algebra $mathfrak g$ valued 1-form on a Riemann surface $Sigma$, is associated an infinite sequence of correlators $W_n$ th at are symmetric $n$-forms on $Sigma^n$. The goal of this article is to prove that these correlators always satisfy loop equations, the same equations satisfied by correlation functions in random matrix models, or the same equations as Virasoro or W-algebra constraints in CFT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا