ﻻ يوجد ملخص باللغة العربية
To any differential system $dPsi=PhiPsi$ where $Psi$ belongs to a Lie group (a fiber of a principal bundle) and $Phi$ is a Lie algebra $mathfrak g$ valued 1-form on a Riemann surface $Sigma$, is associated an infinite sequence of correlators $W_n$ that are symmetric $n$-forms on $Sigma^n$. The goal of this article is to prove that these correlators always satisfy loop equations, the same equations satisfied by correlation functions in random matrix models, or the same equations as Virasoro or W-algebra constraints in CFT.
For a given polynomial $V(x)in mathbb C[x]$, a random matrix eigenvalues measure is a measure $prod_{1leq i<jleq N}(x_i-x_j)^2 prod_{i=1}^N e^{-V(x_i)}dx_i$ on $gamma^N$. Hermitian matrices have real eigenvalues $gamma=mathbb R$, which generalize to
This paper is a continuation of our previous work Six-vertex model and non-linear differential equations I. Spectral problem in which we have put forward a method for studying the spectrum of the six-vertex model based on non-linear differential equa
We consider abelian twisted loop Toda equations associated with the complex general linear groups. The Dodd--Bullough--Mikhailov equation is a simplest particular case of the equations under consideration. We construct new soliton solutions of these
We formulate a notion of abstract loop equations, and show that their solution is provided by a topological recursion under some assumptions, in particular the result takes a universal form. The Schwinger-Dyson equation of the one and two hermitian m
Starting from a $dtimes d$ rational Lax pair system of the form $hbar partial_x Psi= LPsi$ and $hbar partial_t Psi=RPsi$ we prove that, under certain assumptions (genus $0$ spectral curve and additional conditions on $R$ and $L$), the system satisfie