ترغب بنشر مسار تعليمي؟ اضغط هنا

Common framework and quadratic Bethe equations for rational Gaudin magnets in arbitrarily oriented magnetic fields

356   0   0.0 ( 0 )
 نشر من قبل Alexandre Faribault
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we demonstrate a simple way to implement the quantum inverse scattering method to find eigenstates of spin-1/2 XXX Gaudin magnets in an arbitrarily oriented magnetic field. The procedure differs vastly from the most natural approach which would be to simply orient the spin quantisation axis in the same direction as the magnetic field through an appropriate rotation. Instead, we define a modified realisation of the rational Gaudin algebra and use the quantum inverse scattering method which allows us, within a slightly modified implementation, to build an algebraic Bethe ansatz using the same unrotated reference state (pseudovacuum) for any external field. This common framework allows us to easily write determinant expressions for certain scalar products which would be highly non-trivial in the rotated system approach.



قيم البحث

اقرأ أيضاً

In this work, we construct an alternative formulation to the traditional Algebraic Bethe ansatz for quantum integrable models derived from a generalised rational Gaudin algebra realised in terms of a collection of spins 1/2 coupled to a single bosoni c mode. The ensemble of resulting models which we call Dicke-Jaynes-Cummings- Gaudin models are particularly relevant for the description of light-matter interaction in the context of quantum optics. Having two distinct ways to write any eigenstate of these models we then combine them in order to write overlaps and form factors of local operators in terms of partition functions with domain wall boundary conditions. We also demonstrate that they can all be written in terms of determinants of matrices whose entries only depend on the eigenvalues of the conserved charges. Since these eigenvalues obey a much simpler set of quadratic Bethe equations, the resulting expressions could then offer important simplifications for the numerical treatment of these models.
We establish the most general class of spin-1/2 integrable Richardson-Gaudin models including an arbitrary magnetic field, returning a fully anisotropic (XYZ) model. The restriction to spin-1/2 relaxes the usual integrability constraints, allowing fo r a general solution where the couplings between spins lack the usual antisymmetric properties of Richardson-Gaudin models. The full set of conserved charges are constructed explicitly and shown to satisfy a set of quadratic equations, allowing for the numerical treatment of a fully anisotropic central spin in an external magnetic field. While this approach does not provide expressions for the exact eigenstates, it allows their eigenvalues to be obtained, and expectation values of local observables can then be calculated from the Hellmann-Feynman theorem.
138 - S. Belliard , A. Faribault 2018
The distribution of Bethe roots, solution of the inhomogeneous Bethe equations, which characterize the ground state of the periodic XXX Heisenberg spin-$frac{1}{2}$ chain is investigated. Numerical calculations shows that, for this state, the new inh omogeneous term does not contribute to the Baxter T-Q equation in the thermodynamic limit. Different families of Bethe roots are identified and their large N behaviour are conjectured and validated.
553 - A. I. Molev , E. E. Mukhin 2015
A theorem of Feigin, Frenkel and Reshetikhin provides expressions for the eigenvalues of the higher Gaudin Hamiltonians on the Bethe vectors in terms of elements of the center of the affine vertex algebra at the critical level. In our recent work, ex plicit Harish-Chandra images of generators of the center were calculated in all classical types. We combine these results to calculate the eigenvalues of the higher Gaudin Hamiltonians on the Bethe vectors in an explicit form. The Harish-Chandra images can be interpreted as elements of classical $W$-algebras. We provide a direct connection between the rings of $q$-characters and classical $W$-algebras by calculating classical limits of the corresponding screening operators.
We give an example of infinite order rational transformation that leaves a linear differential equation covariant. This example can be seen as a non-trivial but still simple illustration of an exact representation of the renormalization group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا