ترغب بنشر مسار تعليمي؟ اضغط هنا

Catching a star before explosion: the luminous blue variable progenitor of SN 2015bh

95   0   0.0 ( 0 )
 نشر من قبل Ioana Boian
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we analyse the pre-explosion spectrum of SN2015bh by performing radiative transfer simulations using the CMFGEN code. This object has attracted significant attention due to its remarkable similarity to SN2009ip in both its pre- and post-explosion behaviour. They seem to belong to a class of events for which the fate as a genuine core-collapse supernova or a non-terminal explosion is still under debate. Our CMFGEN models suggest that the progenitor of SN2015bh had an effective temperature between 8700 and 10000 K, luminosity in the range ~ 1.8-4.74e6 Lsun, contained at least 25% H in mass at the surface, and half-solar Fe abundances. The results also show that the progenitor of SN 2015bh generated an extended wind with a mass-loss rate of ~ 6e-4 to 1.5e-3 Msun/yr and a velocity of 1000 km/s. We determined that the wind extended to at least 2.57e14 cm and lasted for at least 30 days prior to the observations, releasing 5e-5 Msun into the circumstellar medium. In analogy to 2009ip, we propose that this is the material that the explosive ejecta could interact at late epochs, perhaps producing observable signatures that can be probed with future observations. We conclude that the progenitor of SN 2015bh was most likely a warm luminous blue variable of at least 35 Msun before the explosion. Considering the high wind velocity, we cannot exclude the possibility that the progenitor was a Wolf-Rayet star that inflated just before the 2013 eruption, similar to HD5980 during its 1994 episode. If the star survived, late-time spectroscopy may reveal either a similar LBV or a Wolf-Rayet star, depending on the mass of the H envelope before the explosion. If the star exploded as a genuine SN, 2015bh would be a remarkable case of a successful explosion after black-hole formation in a star with a possible minimum mass 35 Msun at the pre-SN stage.



قيم البحث

اقرأ أيضاً

The luminous blue variable (LBV) RMC143 is located in the outskirts of the 30~Doradus complex, a region rich with interstellar material and hot luminous stars. We report the $3sigma$ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust. Both the extinction map and the SED are consistent with a dusty massive nebula with a dust mass of $0.055pm0.018~M_{odot}$ (assuming $kappa_{850}=1.7rm,cm^{2},g^{-1}$). To date, RMC143 has the most dusty LBV nebula observed in the Magellanic Clouds. We have also re-examined the LBV classification of RMC143 based on VLT/X-shooter spectra obtained in 2015/16 and a review of the publication record. The radiative transfer code CMFGEN is used to derive its fundamental stellar parameters. We find an effective temperature of $sim 8500$~K, luminosity of log$(L/L_{odot}) = 5.32$, and a relatively high mass-loss rate of $1.0 times 10^{-5}~M_{odot}$~yr$^{-1}$. The luminosity is much lower than previously thought, which implies that the current stellar mass of $sim8~M_{odot}$ is comparable to its nebular mass of $sim 5.5~M_{odot}$ (from an assumed gas-to-dust ratio of 100), suggesting that the star has lost a large fraction of its initial mass in past LBV eruptions or binary interactions. While the star may have been hotter in the past, it is currently not hot enough to ionize its circumstellar nebula. We propose that the nebula is ionized externally by the hot stars in the 30~Doradus star-forming region.
129 - Ori D. Fox 2016
The nature of the progenitor star (or system) for the Type IIn supernova (SN) subclass remains uncertain. While there are direct imaging constraints on the progenitors of at least four Type IIn supernovae, one of them being SN 2010jl, ambiguities rem ain in the interpretation of the unstable progenitors and the explosive events themselves. A blue source in pre-explosion HST/WFPC2 images falls within the 5 sigma astrometric error circle derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently for post-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014 and 2015, when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0.099 +/- 0.008 (24 +/- 2 pc) from the underlying and extended source of emission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (<5-6 Myr) cluster and still argues for a massive (>30 solar masses) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.
107 - M. Fraser 2015
We present new late-time near-infrared imaging of the site of the nearby core-collapse supernova SN 2012aw, confirming the disappearance of the point source identified by Fraser et al. (2012) and Van Dyk et al. (2012) as a candidate progenitor in bot h J and Ks filters. We re-measure the progenitor photometry, and find that both the J and Ks magnitudes of the source are consistent with those quoted in the literature. We also recover a marginal detection of the progenitor in H-band, for which we measure H=19.67+/-0.40 mag. Comparing the luminosity of the progenitor to stellar evolutionary models, SN 2012aw appears to have resulted from the explosion of a 12.5+/-1.5 Msun red supergiant.
67 - Yang Huang 2019
The hot massive luminous blue variables (LBVs) represent an important evolutionary phase of massive stars. Here, we report the discovery of a new LBV -- LAMOST J0037+4016 in the distant outskirt of the Andromeda galaxy. It is located in the south-wes tern corner (a possible faint spiral arm) of M31 with an unexpectedly large projection distance of $sim$ 22 kpc from the center. The optical light curve shows a 1.2 mag variation in $V$ band and its outburst and quiescence phases both last over several years. The observed spectra indicate an A-type supergiant at epoch close to the outburst phase and a hot B-type supergiant with weak [Fe II] emission lines at epoch of much dimmer brightness. The near-infrared color-color diagram further shows it follows the distribution of Galactic and M31 LBVs rather than B[e] supergiants. All the existing data strongly show that LAMOST J0037+4016 is an LBV. By spectral energy distribution fitting, we find it has a luminosity ($4.42 pm 1.64$)$times 10^5$ $L_{odot}$ and an initial mass $sim 30$ $M_{odot}$, indicating its nature of less luminosity class of LBV.
`Star G, near the center of the supernova remnant of Tychos SN1572, has been claimed to be the ex-companion star of the exploding white dwarf, thus pointing to the progenitor being like a recurrent nova. This claim has been controversial, but there h ave been no confident proofs or disproofs. Previously, no has seriously addressed the question as to the exact explosion site in 1572. We now provide accurate measures of the supernova position by two radically different methods. Our first method is to use the 42 measured angular distances between the supernova in 1572 and bright nearby stars, with individual measures being as good as 84 arc-seconds, and all resulting in a position with a 1-$sigma$ error radius of 39 arc-seconds (including systematic uncertainties). Our second method is to use a detailed and realistic expansion model for 19 positions around the edge of the remnant, where the swept-up material has measured densities, and we determine the center of expansion with a chi-square fit to the 19 measured radii and velocities. This method has a 1-$sigma$ error radius of 7.5 arc-seconds. Both measures are substantially offset from the geometric center, and both agree closely, proving that neither has any significant systematic errors. Our final combined position for the site of the 1572 explosion is J2000 $alpha$=0h 25m 15.36s, $delta=64^{circ} 8 40.2$, with a 7.3 arc-second 1-sigma uncertainty. Star G is rejected at the 8.2-$sigma$ confidence level. Our new position lies mostly outside the region previously searched for ex-companion stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا