ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the $bar K N$ system and coupled channels in a finite volume

110   0   0.0 ( 0 )
 نشر من قبل Alberto Mart\\'inez Torres
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the $bar KN$ and coupled channels system in a finite volume and study the properties of the $Lambda(1405)$ resonance. We calculate the energy levels in a finite volume and solve the inverse problem of determining the resonance position in the infinite volume. We devise the best strategy of analysis to obtain the two poles of the $Lambda(1405)$ in the infinite volume case, with sufficient precision to distinguish them.



قيم البحث

اقرأ أيضاً

54 - P. C. Bruns , A. Cieply 2021
We study the impact of SU(3) flavor symmetry breaking on the properties of dynamically generated $Lambda^*$ states within an effective separable potential model describing the coupled channels $bar{K}N$ system. The model is based on the chiral meson- baryon Lagrangian at next-to-leading order, and constitutes an improvement over a previous model developed by our group, with its applicability being extended to higher energies covering the $Lambda(1670)$ resonance region. It is demonstrated that the ratios of channel couplings to the resonant states can vary dramatically when the flavor breaking is gradually switched off, tracing a path to the restored SU(3) symmetry. We conclude that the couplings determined from physical observables cannot be used to reliably relate a given resonance to a specific flavor multiplet.
As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C76, 065201 (2007). The channels included are pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N resonant components. The non-resonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N^*) states which are dressed by the non-resonant interactions as constrained by the unitarity condition. The data of total cross sections and pi N and pi pi invariant mass distributions of pi^+ p --> pi^+ pi^+ n, pi^+ pi^0p and pi^- p --> pi^+ pi^- n, pi^- pi^0 n, pi^0 pi^0 n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference between the contributions from the pi Delta, sigma N, and rho N channels. The large interference between the resonant and non-resonant amplitudes is also demonstrated. Possible future developements are discussed.
165 - W.L. Wang , Z.Y. Zhang 2011
A dynamical coupled-channel study of K* K*bar state with isospin 0 and omega phi state is performed within both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model para meters are taken from our previous work, which gave a satisfactory description of the energies of the octet and decuplet baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The results show that the interactions of K* K*bar states are attractive, which consequently result in K* K*bar bound states with the binding energies of about 10-70 MeV, and contrarily, no omega phi bound state is obtained. The channel coupling effect of K* K*bar and omega phi is found to be considerably large, which makes the binding of K* K*bar 5-45 MeV deeper. The plausible interpretation of f_0(1710) and X(1812) being K* K*bar dominated states is briefly discussed.
We evaluate the $sigma$ exchange contribution to the $bar{K}Ntobar{K}N$ scattering within a chiral unitary approach. We show that the chiral transition potentials for $pi pi to K bar{K}$ in the $t$-channel lead to a $sigma$ contribution that vanishes in the $bar{K}$ forward direction and, hence, would produce a null $sigma$ exchange contribution to the $K^-$ optical potential in nuclear matter in a simple impulse approximation. This is a consequence of the fact that the leading order chiral Lagrangian gives an I=0 $pipito Kbar{K}$ amplitude proportional to the squared momentum transfer, $q^2$. This finding poses questions on the meaning or the origin of $sigma$ exchange potentials used in relativistic mean field approaches to the $K^-$ nuclear selfenergy. This elementary $sigma$ exchange potential in $bar{K}Ntobar{K}N$ is compared to the Weinberg-Tomozawa term and is found to be smaller than present theoretical uncertainties but will be relevant in the future when aiming at fitting increasingly more accurate data.
The reaction $pi^{-}p to eta n$ is investigated within a dynamical coupled-channels model of meson production reactions in the nucleon resonance region. The meson baryon channels included are $pi N$, $eta N$, $pi Delta$, $sigma N$, and $rho N$. The n on-resonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two excited nucleon states in each of $S$, $P$, $D$, and $F$ partial waves are included to generate the resonant amplitudes. Data of $pi^{-}p to eta n$ reaction from threshold up to a total center-of-mass energy of about 2 GeV are satisfactorily reproduced and the roles played by the following nine nucleon resonances are investigated: $S_{11}(1535)$, $S_{11}(1650)$, $P_{11}(1440)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1520)$, $D_{13}(1700)$, $D_{15}(1675)$, and $F_{15}(1680)$. The reaction mechanism as well as the predicted $eta N$ scattering length are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا