ترغب بنشر مسار تعليمي؟ اضغط هنا

HD139614: the interferometric case for a group-Ib pre-transitional young disk

56   0   0.0 ( 0 )
 نشر من قبل Lucas Labadie
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lucas Labadie




اسأل ChatGPT حول البحث

The Herbig Ae star HD 139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD 139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.

قيم البحث

اقرأ أيضاً

Young stars interact with their accretion disk through their strong magnetosphere. We investigate the magnetospheric accretion process in the young stellar system DoAr 44. We monitored the system over several rotational cycles, combining high-resolut ion optical and near-IR spectropolarimetry with long-baseline near-IR interferometry and multicolor photometry. DoAr 44 is a young 1.2 solar mass star, moderately accreting from its disk, and seen at a low inclination. We derive a rotational period of 2.96 d from the systems light curve. Several optical and near-IR line profiles probing the accretion funnel flows and the accretion shock are modulated at the stellar rotation period. The most variable line profile, HeI 1083 nm, exhibits modulated redshifted wings a signature of accretion funnel flows, as well as deep blueshifted absorptions indicative of transient outflows. The Zeeman-Doppler analysis suggests the star hosts a mainly dipolar magnetic field, inclined by about 20 deg. onto the spin axis, with an intensity reaching about 800 G at the photosphere, and up to 2 +/- 0.8 kG close to the accretion shock. The magnetic field appears strong enough to disrupt the inner disk close to the corotation radius, at a distance of about 4.6 stellar radii (0.043 au). This supports the upper limit of 5 stellar radii (0.047 au) we derived for the size of the magnetosphere from long baseline interferometry. DoAr 44 is a pre-transitional disk system, exhibiting a 25-30 au gap in its circumstellar disk, with the inner and outer disks being misaligned. On a scale of 0.1 au or less, our results indicate that the system steadily accretes from its inner disk through its tilted dipolar magnetosphere. We conclude that in spite of a highly structured outer disk, perhaps the signature of ongoing planetary formation, the magnetospheric accretion process proceeds unimpeded at the star-disk interaction level.
The disk around AB Aur was imaged and resolved at 24.6,$mu$m using the Cooled Mid-Infrared Camera and Spectrometer on the 8.2m Subaru Telescope. The gaussian full-width at half-maximum of the source size is estimated to be 90 $pm$ 6 AU, indicating th at the disk extends further out at 24.6,$mu$m than at shorter wavelengths. In order to interpret the extended 24.6,$mu$m image, we consider a disk with a reduced surface density within a boundary radius $R_c$, which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor $f_c$ for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6,$mu$m is achieved with $R_c$=88 AU and $f_c$=0.01. We suggest that the extended emission at 24.6,$mu$m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at $R_c$. Such reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.
We present near-IR and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASAs Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral en ergy distribution reveals variability of up to 45% between ~1.5-10 {mu}m over a maximum timescale of 10 years. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the <1 AU region of the disk. Through analysis of the Pa {beta} and Br {gamma} lines in our data we derive a mass accretion rate in May 2013 of (1.5 - 2.7) x 10^-9 Msun/yr. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 years of observations. We find that shifting the outer edge (r = 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ~40-70 AU dark ring imaged in the NIR by Quanz et al. (2013) and Momose et al. (2013) and at 7 mm by Osorio et al. (2014) may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies.
Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the p re-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5 to 13 {mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically-thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii >46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K, and L band, we detect asymmetries in the brightness distribution on scales of about 15-40 AU, i.e. within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.
We present high resolution H-band polarized intensity (PI; FWHM = 0.1: 14 AU) and L-band imaging data (FWHM = 0.11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0.2) up to 210 AU (1.5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is ~70 AU. Our data show that the geometric center of the disk shifts by ~6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L-band imaging data, we put an upper limit mass of companions at ~30 to ~50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا