ﻻ يوجد ملخص باللغة العربية
We present near-IR and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASAs Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ~1.5-10 {mu}m over a maximum timescale of 10 years. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the <1 AU region of the disk. Through analysis of the Pa {beta} and Br {gamma} lines in our data we derive a mass accretion rate in May 2013 of (1.5 - 2.7) x 10^-9 Msun/yr. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 years of observations. We find that shifting the outer edge (r = 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ~40-70 AU dark ring imaged in the NIR by Quanz et al. (2013) and Momose et al. (2013) and at 7 mm by Osorio et al. (2014) may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies.
HD 163296 is a Herbig Ae star that underwent a dramatic $sim$0.8 magnitude drop in brightness in the V photometric band in 2001 and a brightening in the near-IR in 2002. Because the star possesses Herbig-Haro objects travelling in outflowing bipolar
We present thirteen epochs of near-infrared (0.8-5 micron) spectroscopic observations of the pre-transitional, gapped disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (including Br gamma, Pa beta, and the 0.8446 micron line of
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows wit
We present Very Large Array observations at 7 mm that trace the thermal emission of large dust grains in the HD 169142 protoplanetary disk. Our images show a ring of enhanced emission of radius ~25-30 AU, whose inner region is devoid of detectable 7
We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 - M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the