ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of InGaAs facets using metal modulation epitaxy (MME)

134   0   0.0 ( 0 )
 نشر من قبل Mark Wistey
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Control of faceting during epitaxy is critical for nanoscale devices. This work identifies the origins of gaps and different facets during regrowth of InGaAs adjacent to patterned features. Molecular beam epitaxy (MBE) near SiO2 or SiNx led to gaps, roughness, or polycrystalline growth, but metal modulated epitaxy (MME) produced smooth and gap-free rising tide (001) growth filling up to the mask. The resulting self-aligned FETs were dominated by FET channel resistance rather than source-drain access resistance. Higher As fluxes led first to conformal growth, then pronounced {111} facets sloping up away from the mask.

قيم البحث

اقرأ أيضاً

InGaAs/GaAsBi/InGaAs quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type II band-edge line-up. Both type I and type II transitions were observed in the Bi containing W QWs and the photolumines cence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. Blue-shift of type II transitions at high excitation power density was observed and ascribed to the band-bending effect. The calculated transition energies based on 8 band k.p model fit well with the experiment results. The experimental and theoretical results show that the type-II QW design is a new promising candidate for realizing long wavelength GaAs-based light emitting devices near 1.3 um.
A seemingly simple oxide with a rutile structure, RuO2 has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthe sis of RuO2 films but, unfortunately, utilizing atomically-controlled deposition techniques like molecular beam epitaxy (MBE) has been difficult due to the ultra-low vapor pressure and low oxidation potential of Ru. Here, we demonstrate the growth of epitaxial, single-crystalline RuO2 films on different substrate orientations using the novel solid-source metal-organic (MO) MBE. This approach circumvents these issues by supplying Ru using a pre-oxidized solid metal-organic precursor containing Ru. High-quality epitaxial RuO2 films with bulk-like room-temperature resistivity of 55 micro-ohm-cm were obtained at a substrate temperature as low as 300 C. By combining X-ray diffraction, transmission electron microscopy, and electrical measurements, we discuss the effect of substrate temperature, orientation, film thickness, and strain on the structure and electrical properties of these films. Our results illustrating the use of novel solid-source MOMBE approach paves the way to the atomic-layer controlled synthesis of complex oxides of stubborn metals, which are not only difficult to evaporate but also hard to oxidize.
Materials with a layered Kagome lattice are expected to give rise to novel physics arising from band structures with topological properties, spin liquid behavior and the formation of skyrmions. Until now, most work on Kagome materials has been perfor med on bulk samples due to difficulties in thin film synthesis. Here, by using molecular beam epitaxy, layered Kagome-structured FeSn films are synthesized on (111) oriented LaAlO3 substrate. Both in-situ and ex-situ characterizations indicate these films are highly crystalline and c-axis oriented, with atomically smooth surfaces. However, the films grow as disconnected islands, with lateral dimensions on the micron scale. By patterning Pt electrodes using a focused electron beam, longitudinal and transverse resistance of single islands have been measured in magnetic fields. Our work opens a pathway for exploring mesoscale transport properties in thin films of Kagome materials and related devices.
We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased d uring the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN nanowire ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN nanowires at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.
Quantum conductance calculations on the mechanically deformed monolayers of MoS$_2$ and WS$_2$ were performed using the non-equlibrium Greens functions method combined with the Landauer-B{u}ttiker approach for ballistic transport together with the de nsity-functional based tight binding (DFTB) method. Tensile strain and compression causes significant changes in the electronic structure of TMD single layers and eventually the transition semiconductor-metal occurs for elongations as large as ~11% for the 2D-isotropic deformations in the hexagonal structure. This transition enhances the electron transport in otherwise semiconducting materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا