ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-strain competition in quasi-neutral stochastic disease dynamics

186   0   0.0 ( 0 )
 نشر من قبل Oleg Kogan
 تاريخ النشر 2014
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new perturbation method for studying quasi-neutral competition in a broad class of stochastic competition models, and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain generalization of the stochastic Susceptible-Infected-Susceptible (SIS) model. Here we extend previous results due to Parsons and Quince (2007), Parsons et al (2008) and Lin, Kim and Doering (2012). The second model, a two-strain generalization of the stochastic Susceptible-Infected-Recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of sub-population sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the sub-populations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically typical initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.



قيم البحث

اقرأ أيضاً

In genetic circuits, when the mRNA lifetime is short compared to the cell cycle, proteins are produced in geometrically-distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivate d by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a-priori unknown, and in general, may fluctuate in time with a given correlation time and statistics, introduces an additional non-demographic step-size noise into the system. Employing the probability generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that bursty influx exponentially decreases the mean escape time compared to the usual case of single-step influx. In particular, close to bifurcation we find a simple analytical expression for the mean escape time, which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte-Carlo simulations.
119 - Jacek Miekisz 2004
We discuss similarities and differences between systems of interacting players maximizing their individual payoffs and particles minimizing their interaction energy. Long-run behavior of stochastic dynamics of spatial games with multiple Nash equilib ria is analyzed. In particular, we construct an example of a spatial game with three strategies, where stochastic stability of Nash equilibria depends on the number of players and the kind of dynamics.
73 - Shay Beer , Michael Assaf 2016
Recently, a first step was made by the authors towards a systematic investigation of the effect of reaction-step-size noise - uncertainty in the step size of the reaction - on the dynamics of stochastic populations. This was done by investigating the effect of bursty influx on the switching dynamics of stochastic populations. Here we extend this formalism to account for bursty reproduction processes, and improve the accuracy of the formalism to include subleading-order corrections. Bursty reproduction appears in various contexts, where notable examples include bursty viral production from infected cells, and reproduction of mammals involving varying number of offspring. The main question we quantitatively address is how bursty reproduction affects the overall fate of the population. We consider two complementary scenarios: population extinction and population survival; in the former a population gets extinct after maintaining a long-lived metastable state, whereas in the latter a population proliferates despite undergoing a deterministic drift towards extinction. In both models reproduction occurs in bursts, sampled from an arbitrary distribution. In the extinction problem, we show that bursty reproduction broadens the quasi-stationary distribution of population sizes in the metastable state, which results in an exponential decrease of the mean time to extinction. In the survival problem, bursty reproduction yields an exponential increase in survival probability of the population. Close to the bifurcation limit our analytical results simplify considerably and are shown to depend solely on the mean and variance of the burst-size distribution. Our formalism is demonstrated on several realistic distributions which all compare well with numerical Monte-Carlo simulations.
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorpo rated in the model through a stochastic resetting dynamics of the predators to the prey patch. We solve in the long time limit the rate equations of Lotka-Volterra type that describe the evolution of the two species densities. Fixing the demographic parameters and the Levy exponent, the total population of predators can be maximized for a certain value of the resetting rate. This optimal value achieves a compromise between over-exploitation and under-utilization of the habitat. Similarly, at fixed resetting rate, there exists a Levy exponent which is optimal regarding predator abundance. These findings are supported by 2D stochastic simulations and show that the combined effects of diffusion and resetting can broadly extend the region of species coexistence in ecosystems facing resources scarcity.
368 - Uwe C. Tauber 2012
Field theory tools are applied to analytically study fluctuation and correlation effects in spatially extended stochastic predator-prey systems. In the mean-field rate equation approximation, the classic Lotka-Volterra model is characterized by neutr al cycles in phase space, describing undamped oscillations for both predator and prey populations. In contrast, Monte Carlo simulations for stochastic two-species predator-prey reaction systems on regular lattices display complex spatio-temporal structures associated with persistent erratic population oscillations. The Doi-Peliti path integral representation of the master equation for stochastic particle interaction models is utilized to arrive at a field theory action for spatial Lotka-Volterra models in the continuum limit. In the species coexistence phase, a perturbation expansion with respect to the nonlinear predation rate is employed to demonstrate that spatial degrees of freedom and stochastic noise induce instabilities toward structure formation, and to compute the fluctuation corrections for the oscillation frequency and diffusion coefficient. The drastic downward renormalization of the frequency and the enhanced diffusivity are in excellent qualitative agreement with Monte Carlo simulation data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا