ﻻ يوجد ملخص باللغة العربية
Recently, a first step was made by the authors towards a systematic investigation of the effect of reaction-step-size noise - uncertainty in the step size of the reaction - on the dynamics of stochastic populations. This was done by investigating the effect of bursty influx on the switching dynamics of stochastic populations. Here we extend this formalism to account for bursty reproduction processes, and improve the accuracy of the formalism to include subleading-order corrections. Bursty reproduction appears in various contexts, where notable examples include bursty viral production from infected cells, and reproduction of mammals involving varying number of offspring. The main question we quantitatively address is how bursty reproduction affects the overall fate of the population. We consider two complementary scenarios: population extinction and population survival; in the former a population gets extinct after maintaining a long-lived metastable state, whereas in the latter a population proliferates despite undergoing a deterministic drift towards extinction. In both models reproduction occurs in bursts, sampled from an arbitrary distribution. In the extinction problem, we show that bursty reproduction broadens the quasi-stationary distribution of population sizes in the metastable state, which results in an exponential decrease of the mean time to extinction. In the survival problem, bursty reproduction yields an exponential increase in survival probability of the population. Close to the bifurcation limit our analytical results simplify considerably and are shown to depend solely on the mean and variance of the burst-size distribution. Our formalism is demonstrated on several realistic distributions which all compare well with numerical Monte-Carlo simulations.
There is great interest in predicting rare and extreme events in complex systems, and in particular, understanding the role of network topology in facilitating such events. In this work, we show that degree dispersion -- the fact that the number of l
In genetic circuits, when the mRNA lifetime is short compared to the cell cycle, proteins are produced in geometrically-distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivate
We discuss similarities and differences between systems of interacting players maximizing their individual payoffs and particles minimizing their interaction energy. Long-run behavior of stochastic dynamics of spatial games with multiple Nash equilib
We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known determi
In recent years non-demographic variability has been shown to greatly affect dynamics of stochastic populations. For example, non-demographic noise in the form of a bursty reproduction process with an a-priori unknown burst size, or environmental var