ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolution of the discrepancy between the variation of the physical properties of Ce1-xYbxCoIn5 single crystals and thin films with Yb composition

77   0   0.0 ( 0 )
 نشر من قبل M Brian Maple
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of physical properties show that Yb enters the single crystals systematically and in registry with the nominal Yb concentration x of the starting material dissolved in the molten indium flux.

قيم البحث

اقرأ أيضاً

67 - J. Li , C. E. Ekuma , I. Vekhter 2012
We report both experimental and theoretical investigations of the physical properties of Ba$_mathrm{2}$Mn$_mathrm{2}$Sb$_mathrm{2}$O single crystals. This material exhibits a hexagonal structure with lattice constants: a = 4.7029(15) AA{} and c = 19. 9401(27) AA{}, as obtained from powder X-ray diffraction measurements, and in agreement with structural optimization through density functional theory (DFT) calculations. The magnetic susceptibility and specific heat show anomalies at T$_mathrm{N}$ = 60 K, consistent with antiferromagnetic ordering. However, the magnitude of T$_mathrm{N}$ is significantly smaller than the Curie-Weiss temperature ($mid$$mathrm{Theta_{CW}}$$mid$ $approx$ 560 K), suggesting a magnetic system of reduced dimensionality. The temperature dependence of both the in-plane and out-of-plane resistivity changes from an activated at $T$ $>$ T$_mathrm{x}$ $sim$ 200 K to a logarithmic at $T$ $<$ T$_mathrm{x}$. Correspondingly, the magnetic susceptibility displays a bump at T$_mathrm{x}$. DFT calculations at the DFT + U level support the experimental observation of an antiferromagnetic ground state.
Recent theoretical and experimental findings suggest that the long-known but not well understood low temperature resistance plateau of SmB6 may originate from protected surface states arising from a topologically non-trivial bulk band structure havin g strong Kondo hybridization. Yet other studies have ascribed this feature to impurity phases, sample vacancies, and surface reconstructions. Given the typical methods used to prepare SmB6 single crystals, the flux and floating zone procedures, these ascriptions should not be taken lightly. Here, we demonstrate how compositional variations and observable amounts of impurity phases in SmB6 crystals grown by floating zone and flux affect the physical properties. From neutron diffraction and X-ray computed tomography experiments, we observe that a 154Sm11B6 crystal prepared using aluminum flux contains co-crystallized, epitaxial aluminum. A large, nearly stoichiometric crystal of SmB6 was successfully grown using the float-zone technique; upon continuing the zone melting, samarium vacancies are introduced. These samarium vacancies drastically alter the resistance and plateauing magnitude of the low temperature resistance compared to stoichiometric SmB6. These results highlight that small presences of impurity phases and compositional variations must be considered when collecting and analyzing physical property data of SmB6. Finally, a more accurate samarium-154 coherent neutron scattering length value, 8.9(1) fm, is reported.
We present a comparison of the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1-xCaxMnO3 films with x = 0.33 and 0.375, across the metal to insulator transition (MIT) temperature. We combine electrical transport ( resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films near the MIT. The charge-magnetic correlation length (~ 12000 {AA}) for x = 0.33 was much larger (~4 times) than the charge-charge correlation length (~ 3200 {AA}) at 20 K. Whereas for x = 0.375 the charge-magnetic correlation length (~ 7500 {AA}) was smaller than the charge-charge correlation length (~ 9000 {AA}).
The structure of Nd$_{1-x}$Pb$_{x}$MnO$_{3}$ crystals is determined by single crystal X-ray diffraction. Substitution of Pb at the Nd site results in structural phase change from tetragonal (x = 0.25) to cubic (x = 0.37). These changes are attributed to the progressive removal of inter-octahedral tilting and minimization of the octahedral distortion leading to a higher symmetry as doping concentration increases. While the unit cell volume of tetragonal structure ($it{P4/mmm}$) is comparable to that of parent NdMnO$_{3}$, the volume of cubic unit cell ($it{Pmbar{3}m}$) is doubled. Electron diffraction patterns support these results and rule out the possibility of twinning. Changes in transport properties as a function of temperature at different doping levels are in accordance with the observed structural changes. It is noticed that $it{T_{c}}$ and $it{T_{MI}}$ increase with x.
The crystallographic orientation of SrIrO3 surfaces is decisive for the occurrence of topological surface states. We show from DFT computations that (001) and (110) free surfaces have comparable energies, and, correspondingly, we experimentally obser ve that single micro-crystals exhibit both facet orientations. These surfaces are found to relax over typically the length of one oxygen octahedron, defining a structural critical thickness for thin films. A reconstruction of the electronic density associated to tilts of the oxygen octahedra is observed. On the other hand, thin films have invariably been reported to grow along the (110) direction. We show that the interfacial energy associated to the oxygen octahedra distortion for epitaxy is likely at the origin of this specific feature, and propose leads to induce (001) SrIrO3 growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا