ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotropic multi-gap superconductivity in BaFe1.9Pt0.1As2 from thermal transport and spectroscopic measurements

312   0   0.0 ( 0 )
 نشر من قبل Johnpierre Paglione
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal conductivity, point contact spectroscopy, angle-resolved photoemission and Raman spectroscopy measurements were performed on BaFe1.9Pt0.1As2 single crystals obtained from the same synthesis batch in order to investigate the superconducting energy gap structure using multiple techniques. Low temperature thermal conductivity was measured in the superconducting state as a function of temperature and magnetic field, revealing an absence of quasiparticle excitations in the T=0 limit up to 15 T applied magnetic fields. Point-contact Andreev reflection spectroscopy measurements were performed as a function of temperature using the needle-anvil technique, yielding features in the conductance spectra at both 2.5 meV and 7.0 meV scales consistent with a multi-gap scenario. Angle-resolved photoemission spectroscopy probed the electronic band structure above and below the superconducting transition temperature of T_c=23 K, revealing an isotropic gap of magnitude ~3 meV on both electron and hole pockets. Finally, Raman spectroscopy was used to probe quasiparticle excitations in multiple channels, showing a threshold energy scale of 3 meV below T_c. Overall, we find strong evidence for an isotropic gap structure with no nodes or deep minima in this system, with a 3 meV magnitude gap consistently observed and a second, larger gap suggested by point contact spectroscopy measurements. We discuss the implications that the combination of these results reveal about the superconducting order parameter in the BaFe1-xPtxAs2 system and how this relates to similar substituted iron pnictides.

قيم البحث

اقرأ أيضاً

We measured the THz reflectance properties of a high quality epitaxial thin film of the Fe-based superconductor BaFe$_{1.84}$Co$_{0.16}$As$_2$ with T$_c$=22.5 K. The film was grown by pulsed laser deposition on a DyScO$_3$ substrate with an epitaxial SrTiO$_3$ intermediate layer. The measured $R_S/R_N$ spectrum, i.e. the reflectivity ratio between the superconducting and normal state reflectance, provides clear evidence of a superconducting gap $Delta_A$ close to 15 cm$^{-1}$. A detailed data analysis shows that a two-band, two-gap model is absolutely necessary to obtain a good description of the measured $R_S/R_N$ spectrum. The low-energy $Delta_A$ gap results to be well determined ($Delta_A$=15.5$pm$0.5 cm$^{-1}$), while the value of the high-energy gap $Delta_B$ is more uncertain ($Delta_B$=55$pm$7 cm$^{-1}$). Our results provide evidence of a nodeless isotropic double-gap scenario, with the presence of two optical gaps corresponding to 2$Delta/kT_c$ values close to 2 and 7.
The possibility of multi-band conductivity and multi-gap superconductivity is explored in oriented V3Si thin films by means of reflectance and transmittance measurements at terahertz frequencies. The temperature dependence of the transmittance spectr a in the normal state gives evidence of two bands contributing to the film conductivity. This outcome is consistent with electronic structure calculations performed within density functional theory. On this basis, we performed a detailed data analysis and found that all optical data can be consistently accounted for within a two-band framework, with the presence of two optical gaps in the superconducting state corresponding to 2D=kTc values close to 1.8 and 3.8.
The in-plane thermal conductivity $kappa$ of the iron selenide superconductor FeSe$_x$ ($T_c$ = 8.8 K) were measured down to 120 mK and up to 14.5 T ($simeq 3/4 H_{c2}$). In zero field, the residual linear term $kappa_0/T$ at $ T to 0$ is only about 16 $mu$W K$^{-2}$ cm$^{-1}$, less than 4% of its normal state value. Such a small $kappa_0/T$ does not support the existence of nodes in the superconducting gap. More importantly, the field dependence of $kappa_0/T$ in FeSe$_x$ is very similar to that in NbSe$_2$, a typical multi-gap s-wave superconductor. We consider our data as strong evidence for multi-gap nodeless superconductivity in FeSe$_x$. This kind of superconducting gap structure may be generic for all Fe-based superconductors.
To study the superconducting gap structure of BiS$_2$-based layered compound NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ ($T$$_{rm c}$ = 5 K), we measured the thermal conductivity $kappa$, which is a sensitive probe of the low-energy quasiparticle spectrum. In t he absence of a magnetic field, there is only a very small residual linear term in the thermal conductivity $kappa_{0}$/$T$ at $T$ $rightarrow$ 0, indicating the absence of a residual normal fluid, expected for nodal superconductors. Moreover, the applied magnetic field hardly affects the thermal conductivity in the wide range of the vortex state, indicating the absence of Doppler shifted quasiparticles. These results provide evidence that NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ is fully gapped superconductor. The obtained gap structure, along with the robustness of the superconductivity against the impurity, suggest a conventional $s$-wave superconducting state in NdO$_{0.71}$F$_{0.29}$BiS$_{2}$.
Thermal transport measurements have been performed on single-crystalline Co-doped BaFe2As2 down to 0.1 K and under magnetic fields up to 7 T. Significant peak anomalies are observed in both thermal conductivity and thermal Hall conductivity below Tc as an indication of the enhancement of the quasiparticle mean-free path. Moreover, we find a sizable residual T-linear term in thermal conductivity, possibly due to a finite quasiparticle density of states in the superconducting gap induced by impurity pair breaking. Our findings support a pairing symmetry compatible with the theoretically predicted sign-reversing s-wave state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا