ترغب بنشر مسار تعليمي؟ اضغط هنا

Small Connections are cyclic

222   0   0.0 ( 0 )
 نشر من قبل Andrea Pulita
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Andrea Pulita




اسأل ChatGPT حول البحث

The main local invariants of a (one variable) differential module over the complex numbers are given by means of a cyclic basis. In the $p$-adic setting the existence of a cyclic vector is often unknown. We investigate the existence of such a cyclic vector in a Banach algebra. We follow the explicit method of Katz, and we prove the existence of such a cyclic vector under the assumption that the matrix of the derivation is small enough in norm.

قيم البحث

اقرأ أيضاً

79 - Paul Pollack 2020
We call $n$ a cyclic number if every group of order $n$ is cyclic. It is implicit in work of Dickson, and explicit in work of Szele, that $n$ is cyclic precisely when $gcd(n,phi(n))=1$. With $C(x)$ denoting the count of cyclic $nle x$, ErdH{o}s prove d that $$C(x) sim e^{-gamma} x/logloglog{x}, quadtext{as $xtoinfty$}.$$ We show that $C(x)$ has an asymptotic series expansion, in the sense of Poincare, in descending powers of $logloglog{x}$, namely $$frac{e^{-gamma} x}{logloglog{x}} left(1-frac{gamma}{logloglog{x}} + frac{gamma^2 + frac{1}{12}pi^2}{(logloglog{x})^2} - frac{gamma^3 +frac{1}{4} gamma pi^2 + frac{2}{3}zeta(3)}{(logloglog{x})^3} + dots right). $$
In this article we explicitly describe irreducible trinomials X^3-aX+b which gives all the cyclic cubic extensions of Q. In doing so, we construct all integral points (x,y,z) with GCD(y,z)=1, of the curves X^2+3Y^2 = 4DZ^3 and X^2+27Y^2=4DZ^3 as D va ries over cube-free positive integers. We parametrise these points using well known parametrisation of integral points (x,y,z) of the curve X^2+3Y^2=4Z^3 with GCD(y,z)=1.
87 - Pingzhi Yuan , Kevin Zhao 2020
Let $G$ be a finite abelian group. We say that $M$ and $S$ form a textsl{splitting} of $G$ if every nonzero element $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, while $0$ has no such representation. The splitt ing is called textit{purely singular} if for each prime divisor $p$ of $|G|$, there is at least one element of $M$ is divisible by $p$. In this paper, we mainly study the purely singular splittings of cyclic groups. We first prove that if $kge3$ is a positive integer such that $[-k+1, ,k]^*$ splits a cyclic group $mathbb{Z}_m$, then $m=2k$. Next, we have the following general result. Suppose $M=[-k_1, ,k_2]^*$ splits $mathbb{Z}_{n(k_1+k_2)+1}$ with $1leq k_1< k_2$. If $ngeq 2$, then $k_1leq n-2$ and $k_2leq 2n-5$. Applying this result, we prove that if $M=[-k_1, ,k_2]^*$ splits $mathbb{Z}_m$ purely singularly, and either $(i)$ $gcd(s, ,m)=1$ for all $sin S$ or $(ii)$ $m=2^{alpha}p^{beta}$ or $2^{alpha}p_1p_2$ with $alphageq 0$, $betageq 1$ and $p$, $p_1$, $p_2$ odd primes, then $m=k_1+k_2+1$ or $k_1=0$ and $m=k_2+1$ or $2k_2+1$.
183 - Dmitriy Bilyk 2008
In [13], K. Roth showed that the expected value of the $L^2$ discrepancy of the cyclic shifts of the $N$ point van der Corput set is bounded by a constant multiple of $sqrt{log N}$, thus guaranteeing the existence of a shift with asymptotically minim al $L^2$ discrepancy, [11]. In the present paper, we construct a specific example of such a shift.
We study the initial value problem for the wave maps defined on the cyclic spacetime with the target Riemannian manifold that is responsive (see definition of the self coherence structure) to the parametric resonance phenomena. In particular, for arb itrary small and smooth initial data we construct blowing up solutions of the wave map if the metric of the base manifold is periodic in time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا