ﻻ يوجد ملخص باللغة العربية
We study the initial value problem for the wave maps defined on the cyclic spacetime with the target Riemannian manifold that is responsive (see definition of the self coherence structure) to the parametric resonance phenomena. In particular, for arbitrary small and smooth initial data we construct blowing up solutions of the wave map if the metric of the base manifold is periodic in time.
We provide a new analysis of the Boltzmann equation with constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is $L^2_{x,v}$; we prove global well-posedness and a version of scattering, assuming that the data $f_0$ i
We consider co-rotational wave maps from Minkowski space in $d+1$ dimensions to the $d$-sphere. Recently, Bizon and Biernat found explicit self-similar solutions for each dimension $dgeq 4$. We give a rigorous proof for the mode stability of these self-similar wave maps.
We consider nonlinear half-wave equations with focusing power-type nonlinearity $$ i pt_t u = sqrt{-Delta} , u - |u|^{p-1} u, quad mbox{with $(t,x) in R times R^d$} $$ with exponents $1 < p < infty$ for $d=1$ and $1 < p < (d+1)/(d-1)$ for $d geq 2$.
We consider co-rotational wave maps from the $(1+d)$-dimensional Minkowski space into the $d$-sphere for $dgeq 3$ odd. This is an energy-supercritical model which is known to exhibit finite-time blowup via self-similar solutions. Based on a method de
We review the current state of results about the half-wave maps equation on the domain $mathbb{R}^d$ with target $mathbb{S}^2$. In particular, we focus on the energy-critical case $d=1$, where we discuss the classification of traveling solitary waves